Name: \qquad R. Hammack

Score: \qquad

Directions: Please answer all questions in the space provided.
Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. For what values of x is the set $B=\{(1, x, x),(x, 1, x),(x, x, 1)\}$ not a basis for \mathbb{R}^{3} ?

To find the x for which B is not a basis, we look for the values of x that make B linearly dependent. Consider the equation $c_{1}(1, x, x)+c_{2}(x, 1, x)+c_{3}(x, x, 1)=(0,0,0)$.
When we put this into the form of a matrix equation, we get: $\left[\begin{array}{ccc}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
We know that this equation will have only a trivial solution precisely if the determinant of the coefficient matrix is not zero. Thus B will be linearly independent if the determinant is nonzero, and linearly dependent if it is zero. Thus, to find the values of x for which B is NOT a basis, we look for the values of x that make the determinant zero.
Now, the coefficient matrix is $A=\left[\begin{array}{ccc}1 & x & x \\ x & 1 & x \\ x & x & 1\end{array}\right]$.
Expanding along the first row, we get

$$
\begin{aligned}
|A| & =1\left(1-x^{2}\right)-x\left(x-x^{2}\right)+x\left(x^{2}-x\right) \\
& =\left(1-x^{2}\right)-x^{2}(1-x)+x^{2}(x-1) \\
& =(1-x)(1+x)-x^{2}(1-x)+x^{2}(x-1) \\
& =(x-1)\left[-(1+x)+x^{2}+x^{2}\right] \\
& =(x-1)\left[2 x^{2}-x-1\right] \\
& =(x-1)(2 x+1)(x-1)
\end{aligned}
$$

From this we can see that $|A|$ equals 0 when $x=1$ or $x=-1 / 2$.
Therefore B is not a basis if $x=1$ or $x=-1 / 2$

