\qquad
\qquad

Directions: Please answer all questions in the space provided. Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. A matrix A is symmetric if $A^{T}=A$. Find a basis for the vector space of all 3×3 symmetric matrices.

If A is a 3×3 symmetric matrix, then the condition $A^{T}=A$ means A has form $A=\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]$, for $a, b, c, d, e, f \in \mathbb{R}$. Let $V=\left\{\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]: a, b, c, d, e, f \in \mathbb{R}\right\}$ be the set of all symmetric 3×3 matrices (which is easily seen to be a subspace of $M_{3,3}$.) Notice that for any symmetric matrix A we have
$A=\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]=a\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]+b\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]+c\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]+d\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]+e\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]+f\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Thus the set $S=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$ spans V.
Also, the set S is linearly independent because if
$c_{1}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]+c_{2}\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]+c_{3}\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]+c_{4}\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]+c_{5}\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]+c_{6}\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$,
then $\left[\begin{array}{lll}c_{1} & c_{2} & c_{3} \\ c_{2} & c_{4} & c_{5} \\ c_{3} & c_{5} & c_{6}\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and consequently $c_{1}=c_{2}=c_{3}=c_{4}=c_{5}=c_{6}=0$.
So we have seen that the set S spans V and is linearly independent. Conclusion:
The set $S=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\right\}$ is a basis for V.

You had one of the following problems for your second question:
2. Consider the following subspace of $\mathbb{R}^{4}: W=\{(t, 3 s-4 t, t+s, s): s$ and t are real numbers $\}$

Find a basis for W. State the dimension of W.

Note that $(t, 3 s-4 t, t+s, s)=s(0,3,1,1)+t(1,-4,1,0)$.
This means any vector in W is a linear combination of $(0,3,1,1)$ and $(1,-4,1,0)$.
Thus the set $S=\{(0,3,1,1),(1,-4,1,0)\}$ spans W.
Moreover, the set S of two vectors is linearly independent because no vector in S is a multiple of the other.
Since S is linearly independent and spans W, it is a basis for W.
Since the basis has two elements, the subspace W has dimension 2.
Conclusion: The set $\{(0,3,1,1),(1,-4,1,0)\}$ is a basis for W, and W is two-dimensional.
3. Consider the following subspace of $\mathbb{R}^{4}: \quad W=\{(2 s-3 t, s, t+s, t): s$ and t are real numbers $\}$

Find a basis for W. State the dimension of W.

Note that $(2 s-3 t, s, t+s, t)=s(2,1,1,0)+t(-3,0,1,1)$.
This means any vector in W is a linear combination of $(2,1,1,0)$ and $(-3,0,1,1)$.
Thus the set $S=\{((2,1,1,0),(-3,0,1,1)\}$ spans W.
Moreover, the set S of two vectors is linearly independent because no vector in S is a multiple of the other.
Since S is linearly independent and spans W, it is a basis for W.
Since the basis has two elements, the subspace W has dimension 2.
Conclusion: The set $\{((2,1,1,0),(-3,0,1,1)\}$ is a basis for W, and W is two-dimensional.

