Name: \qquad R. Hammack Score: \qquad

Directions: Please answer all questions in the space provided.
Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are three vectors in a vector space V. Without knowing any further information, is it possible to say whether or not the set $\{\mathbf{v}-\mathbf{u}, \mathbf{w}-\mathbf{v}, \mathbf{u}-\mathbf{w}\}$ is linearly independent or dependent?

Notice that $1(\mathbf{v}-\mathbf{u})+1(\mathbf{w}-\mathbf{v})+1(\mathbf{u}-\mathbf{w})=\mathbf{0}$, so it follows the set S is linearly dependent.

Note: One common mistake was to take the equation $c_{1}(\mathbf{v}-\mathbf{u})+c_{2}(\mathbf{w}-\mathbf{v})+c_{3}(\mathbf{u}-\mathbf{w})=\mathbf{0}$, regroup it as $\left(c_{3}-c_{1}\right) \mathbf{u}+\left(c_{1}-c_{2}\right) \mathbf{v}+\left(c_{2}-c_{3}\right) \mathbf{w}=\mathbf{0}$, get $c_{3}-c_{1}=0, c_{1}-c_{2}=0, c_{2}-c_{3}=0$, and solve the resulting system.

But there is a problem with this approach. Since we are not given that the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, we can't deduce that $c_{3}-c_{1}=0, c_{1}-c_{2}=0, c_{2}-c_{3}=0$.
2. Does the set $S=\left\{1+x, x+x^{2}, x^{2}+x^{3}, 1+x^{3}\right\}$ span P_{3} ?

Given an arbitrary polynomial $a+b x+c x^{2}+d x^{3}$, we want to know if we can always find values for $c_{1}, c_{2}, c_{3}, c_{4}$ satisfying $c_{1}(1+x)+c_{2}\left(x+x^{2}\right)+c_{3}\left(x^{2}+x^{3}\right)+c_{4}\left(1+x^{3}\right)=a+b x+c x^{2}+d x^{3}$.
Combining, we get $\left(c_{1}+c_{4}\right)+\left(c_{1}+c_{2}\right) x+\left(c_{2}+c_{3}\right) x^{2}+\left(c_{3}+c_{4}\right) x^{3}=a+b x+c x^{2}+d x^{3}$, which leads to the following system.

$$
\left\{\begin{array}{rll}
c_{1} & & +c_{4} \\
c_{1}+c_{2} & =a \\
& c_{2}+c_{3} & \\
& =c \\
& c_{3}+c_{4} & =d
\end{array}\right.
$$

Solving:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & a \\
1 & 1 & 0 & 0 & b \\
0 & 1 & 1 & 0 & c \\
0 & 0 & 1 & 1 & d
\end{array}\right] \stackrel{\text { R }}{R_{2}-R_{1} \rightarrow R_{2}}\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & a \\
0 & 1 & 0 & -1 & b-a \\
0 & 1 & 1 & 0 & c \\
0 & 0 & 1 & 1 & d
\end{array}\right]} \\
& R_{3}-R_{2} \rightarrow R_{3}
\end{aligned} \begin{array}{ccc}
\longrightarrow
\end{array}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & a \\
0 & 1 & 0 & -1 & b-a \\
0 & 0 & 1 & 1 & c-b+a \\
0 & 0 & 1 & 1 & d
\end{array}\right]
$$

Looking at the last row, you can see the system has no solutions for some values of $a, b c$ and d.
In particular if $a=0, b=0, c=0$ and $d=1$, there will be no solution.

Thus the polynomial $0+0 x+0 x^{2}+x^{3}$ cannot be written as a linear combination of elements in S, so S does not span P_{3}.

