Name: \qquad R. Hammack

Score: \qquad

Directions: Please answer all questions in the space provided. Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

Your quiz had ONE of the following two problems.

1. Is the set $\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$ linearly independent or dependent?

We need to see whether the equation $c_{1}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]+c_{2}\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right]+c_{3}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ has any nontrivial solutions.

This equation gives rise to the following system.
$\left\{\begin{array}{r}c_{1}+2 c_{2}+c_{3}=0 \\ c_{1}+c_{2}+c_{3}=0 \\ 3 c_{2}+c_{3}=0 \\ c_{1}+c_{2}+c_{3}=0\end{array}\right.$
$\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 1 & 1 & 0\end{array}\right] \xrightarrow{\substack{R_{2}-R_{1} \rightarrow R_{2} \\ R_{3}-R_{1} \rightarrow R_{3}}}\left[\begin{array}{rrrr}1 & 2 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & -1 & 0 & 0\end{array}\right] \xrightarrow{\substack{R_{3}+3 R_{2} \rightarrow R_{3} \\ R_{4}-R_{2} \rightarrow R_{4}}}\left[\begin{array}{rrrr}1 & 2 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \xrightarrow{\substack{R_{1}+2 R_{2} \rightarrow R_{1} \\ R_{1}-R_{3} \rightarrow R_{1} \\ \rightarrow}}\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
So there's only the trivial solution $c_{1}=0, c_{2}=0, c_{3}=0$, so the set is LINEARLY INDEPENDENT.
2. Is the set $\left\{\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right],\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right],\left[\begin{array}{rr}2 & -4 \\ 7 & 2\end{array}\right]\right\}$ linearly independent or dependent?

We need to see whether the equation $c_{1}\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]+c_{2}\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right]+c_{3}\left[\begin{array}{rr}2 & -4 \\ 7 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ has any nontrivial solutions.

This equation gives rise to the following system.

$\left[\begin{array}{rrrr}1 & 1 & 2 & 0 \\ 1 & 3 & -4 & 0 \\ 2 & 1 & 7 & 0 \\ 1 & 1 & 2 & 0\end{array}\right] \xrightarrow{\substack{R_{2}-R_{1} \rightarrow R_{2} \\ R_{3}-2 R_{1} \rightarrow R_{3} \\ R_{4}-R_{1} \rightarrow R_{4}}}\left[\begin{array}{rrrr}1 & 1 & 2 & 0 \\ 0 & 2 & -6 & 0 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \xrightarrow{\substack{R_{1}+R_{3} \rightarrow R_{1} \\ R_{2}+2 R_{3} \rightarrow R_{2}}}\left[\begin{array}{rrrr}1 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \xrightarrow{\substack{-R_{3} \rightarrow R_{3}}} \xrightarrow{R_{2}}\left[\begin{array}{rrrr}1 & 0 & 5 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
The solutions are $c_{1}=-5 t, \quad c_{2}=3 t, \quad c_{3}=t$.
Set $t=1$, and we get a nontrivial solution $c_{1}=-5, \quad c_{2}=3, \quad c_{3}=1$.
Therefore the given set is LINEARLY DEPENDENT.

