Linear Algebra

Quiz for Section 4.3

October 22, 2009

Name:

R. Hammack

Score: _____

Directions: Please answer all questions in the space provided. Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. In this problem $M_{3,3}$ denotes the set of 3×3 matrices and O denotes the 3×3 zero matrix. Also, A is a fixed 3×3 matrix.

Consider the set $W = \{X \in M_{3,3} : AX = O\} \subseteq M_{3,3}$. Is W a subspace of $M_{3,3}$? Explain why, or why not.

In what follows, we show that W is a subspace of $M_{3,3}$.

First, we need to show W is closed under addition. Take two arbitrary matrices $Y, Z \in W$. Since Y and Z are in W, it follows that AY = O and AZ = O. We need to show that $Z + Y \in W$. Notice that A(Z + Y) = AZ + AY = O + O = O. Since A(Z + Y) = O, it follows that $Z + Y \in W$.

Next, we need to show W is closed under scalar multiplication. Take any $X \in W$ and $c \in \mathbb{R}$. We need to show that $cX \in W$. Since $X \in W$, we know that AX = O. Therefore A(cX) = c(AX) = cO = O. Since A(cX) = O, it follows that $cX \in W$. Therefore W is closed under scalar multiplication.

Since W is closed under addition and scalar multiplication, it follows by Theorem 4.5 that W is a subspace of $M_{3,3}$.