Name: \qquad
\qquad

Directions: Please answer all questions in the space provided. Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. In this problem $M_{3,3}$ denotes the set of 3×3 matrices and O denotes the 3×3 zero matrix. Also, A is a fixed 3×3 matrix.

Consider the set $W=\left\{X \in M_{3,3}: A X=O\right\} \subseteq M_{3,3}$.
Is W a subspace of $M_{3,3}$? Explain why, or why not.

In what follows, we show that W is a subspace of $M_{3,3}$.

First, we need to show W is closed under addition.
Take two arbitrary matrices $Y, Z \in W$.
Since Y and Z are in W, it follows that $A Y=O$ and $A Z=O$.
We need to show that $Z+Y \in W$.
Notice that $A(Z+Y)=A Z+A Y=O+O=O$.
Since $A(Z+Y)=O$, it follows that $Z+Y \in W$.

Next, we need to show W is closed under scalar multiplication.
Take any $X \in W$ and $c \in \mathbb{R}$.
We need to show that $c X \in W$.
Since $X \in W$, we know that $A X=O$.
Therefore $A(c X)=c(A X)=c O=O$.
Since $A(c X)=O$, it follows that $c X \in W$.
Therefore W is closed under scalar multiplication.

Since W is closed under addition and scalar multiplication, it follows by Theorem 4.5 that W is a subspace of $M_{3,3}$.

