Name: $\qquad$ R. Hammack

Score: $\qquad$

Directions: Please answer all questions in the space provided. Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

The following problems concern the matrix $A=\left[\begin{array}{rr}37 & 105 \\ -14 & -40\end{array}\right]$.

1. Find the eigenvalues of $A$.

$$
\begin{aligned}
& \operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}
\lambda-37 & -105 \\
14 & \lambda+40
\end{array}\right|=(\lambda-37)(\lambda+40)+14 \cdot 105=\lambda^{2}+3 \lambda-1480+1470=\lambda^{2}+3 \lambda-10= \\
& (\lambda-2)(\lambda+5)=0
\end{aligned}
$$

From this you can see that the eigenvalues are $\lambda=2$ and $\lambda=-5$.
2. For each eigenvalue from Question 1, find the corresponding eigenvectors.

Eigenvectors for $\lambda=2$ :
$(\lambda I-A) \mathbf{x}=\mathbf{0}$
$(2 I-A) \mathbf{x}=\mathbf{0}$
$\left[\begin{array}{rr}-35 & -105 \\ 14 & 42\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{rrr}-35 & -105 & 0 \\ 14 & 42 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 3 & 0 \\ 1 & 3 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$
Solutions: $x=-3 y$, i.e. $x=-3 t, y=t$ so the eigenvectors for $\lambda=2$ are $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}-3 t \\ t\end{array}\right]=t\left[\begin{array}{r}-3 \\ 1\end{array}\right]$

Eigenvectors for $\lambda=-5$ :
$(\lambda I-A) \mathbf{x}=\mathbf{0}$
$(-5 I-A) \mathbf{x}=\mathbf{0}$
$\left[\begin{array}{rr}-42 & -105 \\ 14 & 35\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{rrr}-42 & -105 & 0 \\ 14 & 35 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}2 & 5 & 0 \\ 2 & 5 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}2 & 5 & 0 \\ 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{lrl}1 & 5 / 2 & 0 \\ 0 & 0 & 0\end{array}\right]$
Solutions: $x=-\frac{5}{2} y$, i.e. $x=-\frac{5}{2} t, y=t$ so the eigenvectors for $\lambda=-5$ are $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}-\frac{5}{2} t \\ t\end{array}\right]=t\left[\begin{array}{r}-\frac{5}{2} \\ 1\end{array}\right]$
Note: By scaling the eigenvector $\left[\begin{array}{r}-\frac{5}{2} \\ 1\end{array}\right]$ by a factor of 2 , we can say that eigenvectors for $\lambda=-5$ are the scalar multiples of $\left[\begin{array}{r}-5 \\ 2\end{array}\right]$

