Name: \qquad R. Hammack

Score: \qquad

Directions: Please answer all questions in the space provided. Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

The following problems concern the matrix $A=\left[\begin{array}{rr}2 & 0 \\ -6 & -1\end{array}\right]$.

1. Find the eigenvalues of A.

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}
\lambda-2 & 0 \\
6 & \lambda+1
\end{array}\right|=(\lambda-2)(\lambda+1)=0
$$

From this you can see that the eigenvalues are $\lambda=2$ and $\lambda=-1$.
2. For each eigenvalue from Question 1, find the corresponding eigenvectors.

Eigenvectors for $\lambda=2$:
$(\lambda I-A) \mathbf{x}=\mathbf{0}$
$(2 I-A) \mathbf{x}=\mathbf{0}$
$\left[\begin{array}{ll}0 & 0 \\ 6 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{lll}0 & 0 & 0 \\ 6 & 3 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 / 2 & 0 \\ 0 & 0 & 0\end{array}\right]$
We now have the equation: $x=-\frac{1}{2} y$, i.e. $x=-\frac{1}{2} t, y=t$ so
the eigenvectors for $\lambda=2$ are $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}-\frac{1}{2} t \\ t\end{array}\right]=t\left[\begin{array}{r}-\frac{1}{2} \\ 1\end{array}\right]$
Note: We can scale this by 2 to put the answer into a slightly nicer form:
the eigenvectors for $\lambda=2$ are $\left[\begin{array}{l}x \\ y\end{array}\right]=t\left[\begin{array}{r}-1 \\ 2\end{array}\right]$

Eigenvectors for $\lambda=-1$:
$(\lambda I-A) \mathbf{x}=\mathbf{0}$
$(-I-A) \mathbf{x}=\mathbf{0}$
$\left[\begin{array}{rr}-3 & 0 \\ 6 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{rrr}-3 & 0 & 0 \\ 6 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrr}-3 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Solutions: $x=0$, i.e. $y=t$, so the eigenvectors for $\lambda=-1$ are $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ t\end{array}\right]=t\left[\begin{array}{l}0 \\ 1\end{array}\right]$

