Name: \qquad R. Hammack

Score: \qquad

Directions: Please answer all questions in the space provided. Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. Suppose A is a square matrix, and $A^{2}=A$.

What are the possible values for $\operatorname{det}(A)$? Explain.

```
\(A^{2}=A\)
\(\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)\)
\(\operatorname{det}(A A)=\operatorname{det}(A)\)
\(\operatorname{det}(A) \operatorname{det}(A)=\operatorname{det}(A)\)
\(\operatorname{det}(A)^{2}-\operatorname{det}(A)=0\)
\(\operatorname{det}(A)(\operatorname{det}(A)-1)=0\)
```

From this equation, it follows that either $\operatorname{det}(A)=0$ or $\operatorname{det}(A)=1$.
2. Find all values of a that make $\left[\begin{array}{ccc}a & a & 0 \\ a^{2} & 2 & a \\ 0 & a & a\end{array}\right]$ singular.

$$
\left|\begin{array}{ccc}
a & a & 0 \\
a^{2} & 2 & a \\
0 & a & a
\end{array}\right|=a\left|\begin{array}{cc}
2 & a \\
a & a
\end{array}\right|-a\left|\begin{array}{cc}
a^{2} & a \\
0 & a
\end{array}\right|=a\left(2 a-a^{2}\right)-a\left(a^{3}-0\right)=2 a^{2}-a^{3}-a^{4}=-a^{2}\left(a^{2}+a-2\right)=a^{2}(a-1)(a+2)
$$

From this you can see that the matrix will be singular for $a=0, a=1$ and $a=-2$.

