Name: \qquad R. Hammack

Score: \qquad

Directions: Please answer all questions in the space provided. Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. Suppose A, B and C are 3×3 matrices for which $|A|=3,|B|=5$ and $\left|2 A B^{-1} C\right|=6$. Find $|C|$.

$$
\begin{aligned}
\left|2 A B^{-1} C\right| & =6 \\
2^{3}\left|A B^{-1} C\right| & =6 \\
8|A|\left|B^{-1}\right||C| & =6 \\
\frac{8|A||C|}{|B|} & =6 \\
\frac{8 \cdot 3 \cdot|C|}{5} & =6 \\
|C| & =\frac{5 \cdot 6}{24}=\frac{5}{4}
\end{aligned}
$$

Answer: $|C|=\frac{5}{4}$.
2. Find the value(s) of k for which the matrix $\left[\begin{array}{ccc}1 & 0 & 5 \\ 2 & 2 & 0 \\ 6 & 5 & k\end{array}\right]$ is not invertible.

Let's calculate the determinant by expanding along the third column:
$\left|\begin{array}{ccc}1 & 0 & 5 \\ 2 & 2 & 0 \\ 6 & 5 & k\end{array}\right|=5\left|\begin{array}{ll}2 & 2 \\ 6 & 5\end{array}\right|+k\left|\begin{array}{cc}1 & 0 \\ 2 & 2\end{array}\right|=5 \cdot(-2)+2 k=-10+2 k$
Thus the determinant is $2 k-10$, and this can only be zero if $k=5$.

Answer: the matrix is not invertible if $k=5$. If k has any other value, the matrix is invertible.

