Name: \qquad R. Hammack

Score: \qquad

Directions: Please answer all questions in the space provided.
Use of calculators or any form of electronic communication device is strictly forbidden on this quiz.

1. Suppose A, B and C are invertible 4 -by- 4 matrices, and $A B^{-1} C=I_{4}$. Express B in terms of A and C.

$$
\begin{aligned}
A B^{-1} C & =I_{4} & & \\
A^{-1} A B^{-1} C & =A^{-1} I_{4} & & \text { (multiply both sides by } A^{-1} \text { on left) } \\
B^{-1} C & =A^{-1} & & \text { (simplify) } \\
B^{-1} C C^{-1} & =A^{-1} C^{-1} & & \text { (multiply both sides by } C^{-1} \text { on right) } \\
B^{-1} & =A^{-1} C^{-1} & & \text { (simplify) } \\
\left(B^{-1}\right)^{-1} & =\left(A^{-1} C^{-1}\right)^{-1} & & \text { (take the inverse of both sides) } \\
B & =C A & & \text { (simplify) }
\end{aligned}
$$

Answer: $B=C A$
2. Find the inverse of the matrix $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 3 & 7 & -10 \\ 7 & 16 & -21\end{array}\right]$, if it exists, or verify that it does not exist.

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
1 & 2 & -1 & 1 & 0 & 0 \\
3 & 7 & -10 & 0 & 1 & 0 \\
7 & 16 & -21 & 0 & 0 & 1
\end{array}\right]} \\
& \begin{array}{c}
R_{2}-3 R_{1} \rightarrow R_{2} \\
R_{3}-7 R_{1} \rightarrow R_{3} \\
\longrightarrow
\end{array} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -7 & -3 & 1 & 0 \\
0 & 2 & -14 & -7 & 0 & 1
\end{array}\right]} \\
& R_{3}-2 R_{2} \rightarrow R_{3} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -7 & -3 & 1 & 0 \\
0 & 0 & 0 & -1 & -2 & 1
\end{array}\right]} \\
& \begin{array}{c}
R_{1}-2 R_{2} \rightarrow R_{1} \\
-R_{3} \rightarrow R_{3}
\end{array} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 13 & 7 & -2 & 0 \\
0 & 1 & -7 & -3 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & -1
\end{array}\right]} \\
& R_{1}-7 R_{3} \rightarrow R_{1} \\
& R_{2}+R_{3} \rightarrow R_{1} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 13 & 0 & -16 & 7 \\
0 & 1 & -7 & 0 & 7 & -3 \\
0 & 0 & 0 & 1 & 2 & -1
\end{array}\right]}
\end{aligned}
$$

We have now achieved reduced row-echelon form, and the identity does not appear on the left. Therefore: The matrix A is not invertible.

