Midterm

Name: $_$

Score: _____

Answer in the space provided. No calculators. Please put all phones, etc., away. Each problem is 10 points.

1. For this problem, $A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ 2 & -2 \end{bmatrix}$, $C = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $D = \begin{bmatrix} 3 & 1 \end{bmatrix}$.

Preform the indicated operations or state that they are not possible.

- (a) $A^T C =$
- (b) $DB^2 =$
- (c) $B^{-1} =$
- (d) |B| =
- (e) $|B^5| =$

- 2. Suppose X and Y are matrices for which the product XY is defined, and $c \in \mathbb{R}$. (a) If XY = O, is necessarily true that X = O or Y = O? Justify your answer.
 - (b) If cY = O, is necessarily true that c = 0 or Y = O?

3. 1	Solve the system	{	2w w w	- + -	x - x - 2x -	+ 8i + 4i + 4i + 4i	/ — / — / —	$\begin{array}{l} 4z = \\ 2z = \\ 2z = \end{array}$	$4 \\ 5 \\ -1$

	1	1	1	
4. Find the inverse of the matrix $A =$	3	4	3	
	3	3	4.	

5. Suppose that $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 4 & 3 \\ 3 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$. Use your answer from problem 4 above to find $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$.

6. Consider the two vectors $\mathbf{u}_1 = (2, 1, 2)$ and $\mathbf{u}_2 = (4, -1, 2)$ in \mathbb{R}^3 . Is the vector $\mathbf{v} = (2, 7, 6)$ a linear combination of \mathbf{u}_1 and \mathbf{u}_2 ? Explain.

$\begin{vmatrix} 4 & 2 & x \end{vmatrix}$	7. Find the value(s) of x for which the matrix	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	$0 \\ -1$	$\frac{3}{0}$	is not invertible.
	l	4	2	<i>x</i> _	

8. Find the 2 × 2 matrix A for which $A\begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix}$.

9. An $n \times n$ (square) matrix A is said to be **skew-symmetric** if $A^T = -A$. Suppose n is odd and A is skew-symmetric. Find det(A).

10. In this problem we regard \mathbb{R}^n as a set of column vectors, that is, $\mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} : x_1, x_2, \dots, x_n \in \mathbb{R} \right\}.$

Let A be fixed $n \times n$ matrix. Show that the set $W = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = -\mathbf{x} \}$ is a subspace of \mathbb{R}^n .