Name: \qquad R. Hammack

Score: \qquad
Answer in the space provided. No calculators. Please put all phones, etc., away. Each problem is 10 points.

1. For this problem, $A=\left[\begin{array}{rrr}2 & 3 & -1 \\ 1 & 4 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & -1 \\ 2 & -2\end{array}\right], C=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, and $D=\left[\begin{array}{ll}3 & 1\end{array}\right]$.

Preform the indicated operations or state that they are not possible.
(a) $A^{T} C=$
(b) $D B^{2}=$
(c) $B^{-1}=$
(d) $|B|=$
(e) $\quad\left|B^{5}\right|=$
2. Suppose X and Y are matrices for which the product $X Y$ is defined, and $c \in \mathbb{R}$.
(a) If $X Y=O$, is necessarily true that $X=O$ or $Y=O$? Justify your answer.
(b) If $c Y=O$, is necessarily true that $c=0$ or $Y=O$?
3. Solve the system $\left\{\begin{aligned} 2 w-x+8 y-4 z & =4 \\ w+x+4 y-2 z & =5 \\ w-2 x+4 y-2 z & =-1\end{aligned}\right.$
4. Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 4 & 3 \\ 3 & 3 & 4\end{array}\right]$.
5. Suppose that $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 4 & 3 \\ 3 & 3 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$. Use your answer from problem 4 above to find $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
6. Consider the two vectors $\mathbf{u}_{1}=(2,1,2)$ and $\mathbf{u}_{2}=(4,-1,2)$ in \mathbb{R}^{3}.

Is the vector $\mathbf{v}=(2,7,6)$ a linear combination of \mathbf{u}_{1} and \mathbf{u}_{2} ? Explain.
7. Find the value(s) of x for which the matrix $\left[\begin{array}{rrr}1 & 0 & 3 \\ 2 & -1 & 0 \\ 4 & 2 & x\end{array}\right]$ is not invertible.
8. Find the 2×2 matrix A for which $A\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
9. An $n \times n$ (square) matrix A is said to be skew-symmetric if $A^{T}=-A$. Suppose n is odd and A is skew-symmetric. Find $\operatorname{det}(A)$.
10. In this problem we regard \mathbb{R}^{n} as a set of column vectors, that is, $\mathbb{R}^{n}=\left\{\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]: x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\}$.

Let A be fixed $n \times n$ matrix. Show that the set $W=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=-\mathbf{x}\right\}$ is a subspace of \mathbb{R}^{n}.

