Midterm

Name: \qquad

Linear Algebra MATH 310 R. Hammack

October 18, 2016

Score: \qquad

Answer in the space provided. No calculators. Please put all phones, etc., away. Each problem is 10 points.

1. For this problem, $A=\left[\begin{array}{rrr}2 & 3 & -1 \\ 1 & 5 & 5\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}2 & -1 \\ -2 & 1\end{array}\right], \mathrm{C}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$, and $\mathrm{D}=\left[\begin{array}{ll}-2 & 0\end{array}\right]$.

Preform the indicated operations or state that they are not possible.
(a) $B A=$
(b) $\mathrm{C}-\frac{1}{2} \mathrm{D}^{\top}=$
(c) $\mathrm{B}^{-1}=$
(d) $\quad \mathrm{CD}=$
(e) Solve the equation $\mathrm{X}-3 \mathrm{~B}+2 \mathrm{I}_{2}=\mathrm{O}$ for X .
2. Suppose A, B and C are invertible matrices. Solve the equation $A X C=C B$ for X.
3. Solve the system $\left\{\begin{array}{r}4 w-8 x-3 y+z=1 \\ -3 w+6 x+2 y+z=1\end{array}\right.$
4. Find the inverse of the matrix $A=\left[\begin{array}{lll}3 & 5 & 5 \\ 1 & 2 & 2 \\ 0 & 1 & 2\end{array}\right]$
5. A square matrix A is called an orthogonal matrix if $A A^{\top}=I$. If A is orthogonal, what are the possible values for $\operatorname{det}(A)$?
6. Find all values of k that make $\left[\begin{array}{cc}2-k & 1 \\ 6 & 1-k\end{array}\right]$ singular.
7. Find A, given that $(2 A)^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
8. Suppose $\mathbf{u}_{1}=(1,3,5), \mathbf{u}_{2}=(2,-1,3), \mathbf{u}_{3}=(-3,2,-4)$ and $\mathbf{v}=(-1,7,2)$. Is \mathbf{v} a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} ?
9. Consider the matrix equation $\left[\begin{array}{rrrr}12 & 15 & 5 & 0 \\ -4 & 0 & 0 & 1 \\ 20 & 3 & 1 & 5 \\ 14 & 12 & 4 & 9\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.

Explain how you know this has more than one solution without making any explicit calculations.
10. Let A be a fixed 2×2 matrix. Prove that the set $W=\left\{X \in M_{2,2}: A X=X A\right\}$ is a subspace of $M_{2,2}$.

