Midterm	Linear Algebra	October 18, 2016
Name:	MATH 310 R. Hammack	Score:

Answer in the space provided. No calculators. Please put all phones, etc., away. Each problem is 10 points.

1. For this problem, $A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 5 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix}$, $C = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, and $D = \begin{bmatrix} -2 & 0 \end{bmatrix}$.

Preform the indicated operations or state that they are not possible.

(a) BA =

- (b) $C \frac{1}{2}D^{T} =$
- (c) $B^{-1} =$
- (d) CD =
- (e) Solve the equation $X 3B + 2I_2 = 0$ for X.

2. Suppose A, B and C are invertible matrices. Solve the equation AXC = CB for X.

3. Solve the system $\begin{cases} 4w - 8x - 3y + z = 1\\ -3w + 6x + 2y + z = 1 \end{cases}$

4. Find the inverse of the matrix $A = \begin{bmatrix} 3 & 5 & 5 \\ 1 & 2 & 2 \\ 0 & 1 & 2 \end{bmatrix}$.

5. A square matrix A is called an *orthogonal matrix* if $AA^{T} = I$. If A is orthogonal, what are the possible values for det(A)?

6. Find all values of k that make $\begin{bmatrix} 2-k & 1 \\ 6 & 1-k \end{bmatrix}$ singular.

7. Find A, given that $(2A)^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

8. Suppose $\mathbf{u}_1 = (1, 3, 5)$, $\mathbf{u}_2 = (2, -1, 3)$, $\mathbf{u}_3 = (-3, 2, -4)$ and $\mathbf{v} = (-1, 7, 2)$. Is \mathbf{v} a linear combination of \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 ?

9. Consider the matrix equation	12	15	5	0]	$\begin{bmatrix} x_1 \end{bmatrix}$	Γ	0]
Q Consider the matrix equation	-4	0	0	1	\mathbf{x}_2		$\left \begin{array}{c} 0\\ 0 \end{array} \right .$	
9. Consider the matrix equation	20	3	1	5	χ_3	_		·
	14	12	4	9	$\begin{bmatrix} x_4 \end{bmatrix}$		0	

Explain how you know this has more than one solution without making any explicit calculations.

10. Let A be a fixed 2×2 matrix. Prove that the set $W = \{X \in M_{2,2} : AX = XA\}$ is a subspace of $M_{2,2}$.