Linear Algebra (Math 310)

Name:	R. Hammack	Score:
1. Suppose $\mathbf{u} = \begin{bmatrix} 1\\ -2\\ -2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 \\ -1 & 5 \\ 2 & 1 \end{bmatrix}.$	

(a) Find **x** if $2\mathbf{u} - 2\mathbf{x} = \mathbf{v}$. $\mathbf{x} = \begin{bmatrix} 1/2 \\ -3 \\ -3 \end{bmatrix}$ (Work omitted. You would have to show it to get full credit.)

(b) $A\mathbf{u} = \begin{bmatrix} -4\\ 1 \end{bmatrix}$

(c)
$$AB = \begin{bmatrix} 11 & 5\\ 2 & 14 \end{bmatrix}$$

(d)
$$BA = \begin{bmatrix} 11 & 2 & 4\\ 13 & 6 & -4\\ 7 & -1 & 8 \end{bmatrix}$$

(e)
$$A + B^T = \begin{bmatrix} 3 & -2 & 6 \\ 6 & 6 & 1 \end{bmatrix}$$

(f) Give a basis for the column space of A.

You can see that the first two columns of A are linearly independent. Thus the span of these two columns is a two-dimensional subspace of \mathbb{R}^2 . Since \mathbb{R}^2 is two-dimensional it follows that the first two columns of A span \mathbb{R}^2 , so they form a basis for \mathbb{R}^2 . Consequently, these first two vectors form a basis for the column space.

$$B = \left\{ \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$
(*There are many other correct answers.*)

(g) $\operatorname{nullity}(A) =$

Since $3 = \operatorname{rank}(A) + \operatorname{nullity}(A)$, and $\operatorname{rank}(A) = 2$ from part (f) above, it follows that $\operatorname{nullity}(A) = 1$.

2. Solve the system:
$$\begin{cases} w + 2y + z = 1\\ -2w + x + y - z = -1\\ w + x + 7y + 3z = 2 \end{cases}$$
$$\begin{bmatrix} 1 & 0 & 2 & 1 & 1\\ -2 & 1 & 1 & -1 & -1\\ 1 & 1 & 7 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 & 1\\ 0 & 1 & 5 & 1 & 1\\ 0 & 1 & 5 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 & 1\\ 0 & 1 & 5 & 1 & 1\\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & 1\\ 0 & 1 & 5 & 0 & 1\\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
Solution:
$$\begin{cases} w = 1 - 2t\\ x = 1 - 5t\\ y = t\\ z = 0 \end{cases}$$

3. Solve the system:
$$\begin{cases} x + y + z = 2\\ x - y - z = 0\\ x + y - z = -1 \end{cases}$$
$$\begin{bmatrix} 1 & 1 & 1 & 2\\ 1 & -1 & -1 & 0\\ 1 & 1 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 2\\ 0 & -2 & -2 & -2\\ 0 & 0 & -2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 2\\ 0 & 1 & 1 & 1\\ 0 & 0 & 1 & 3/2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 1/2\\ 0 & 1 & 0 & -1/2\\ 0 & 0 & 1 & 3/2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 0 & -1/2\\ 0 & 0 & 1 & 3/2 \end{bmatrix}$$
Solution:
$$\begin{cases} x = 1\\ y = -1/2\\ z = 3/2 \end{cases}$$

4. Find the inverse of
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 1 & 1 & 3 & | & 0 & 1 & 0 \\ 1 & 0 & 3 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 3 & 0 & -2 \\ 0 & 1 & 0 & | & 0 & 1 & -1 \\ 0 & 0 & 1 & | & -1 & 0 & 1 \end{bmatrix}$$
Thus $A^{-1} = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$

5.
$$\begin{vmatrix} 3 & 0 & 5 \\ 1 & 1 & 2 \\ 3 & 3 & 3 \end{vmatrix} = 3 \begin{vmatrix} 1 & 2 \\ 3 & 3 \end{vmatrix} + 0 \begin{vmatrix} 1 & 2 \\ 3 & 3 \end{vmatrix} + 5 \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix} = 3(3-6) + 6(3-3) = -9$$

6. Suppose linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies $T\left(\begin{bmatrix} 1\\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2\\ -2 \end{bmatrix}$ and $T\left(\begin{bmatrix} 1\\ 1 \end{bmatrix} \right) = \begin{bmatrix} 5\\ 1 \end{bmatrix}$. Find the standard matrix for T.

Note:
$$T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = T\left(\begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} 1\\0 \end{bmatrix}\right) = T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) - T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 5\\1 \end{bmatrix} - \begin{bmatrix} 2\\-2 \end{bmatrix} = \begin{bmatrix} 3\\3 \end{bmatrix}$$

Standard matrix is $A = \begin{bmatrix} T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) \ T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) \end{bmatrix} = \begin{bmatrix} 2 \ 3\\-2 \ 3 \end{bmatrix}$

7. Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 1 & 2 & 7 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 5 & 1 \end{bmatrix}$$
.

(a) Find a basis for the row space of A.

$$\begin{bmatrix} 1 & 0 & 3 & 2 \\ 1 & 2 & 7 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 5 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 2 & 4 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$B = \{ [1 & 0 & 3 & 0], \ [0 & 1 & 2 & 0], \ [0 & 0 & 0 & 1] \}$$

(b) Find a basis for the nullspace of A.

From the row reduction above, we can see that the nullspace of A is $\left\{ \begin{bmatrix} -3t \\ -2t \\ t \\ 0 \end{bmatrix} : t \in \mathbb{R} \right\} = \operatorname{span} \left(\begin{bmatrix} -3 \\ -2 \\ 1 \\ 0 \end{bmatrix} \right).$

Thus a basis for the nullspace is
$$B = \begin{cases} \begin{bmatrix} -3 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$

8. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^2$, is a linear transformation defined as $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} y-x \\ x+y+z \end{bmatrix}$. Suppose $S : \mathbb{R}^2 \to \mathbb{R}^3$, is a linear transformation defined as $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x-y \\ x \\ y \end{bmatrix}$. Find the standard matrix for $S \circ T$.

Matrix for T is
$$A = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Matrix for S is $B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$
Matrix for $S \circ T$ is $BA = \begin{bmatrix} -2 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

9. Suppose a matrix A satisfies $P^{-1}AP = D$, where $P = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. List the eigenvalues of A, and for each eigenvalue, give a basis for its eigenspace.

(This can be done without computations.)

You can read off the eigenvectors from D and the eigenvectors from P.

Eigenvalue $\lambda = 3$ has an eigenspace with basis $\left\{ \begin{bmatrix} 1\\4\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ Eigenvalue $\lambda = 4$ has an eigenspace with basis $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$

10. Decide if the polynomials $\{2-x, 2x-x^2, 6-5x+x^2\}$ in P_2 are linearly independent or linearly dependent.

By inspection, you can see that $-3(2-x) + 1(2x - x^2) + 1(6 - 5x + x^2) = 0$, so the polynomials are linearly dependent.

11. Suppose A is an invertible matrix. Prove that if λ is an eigenvalue of A with corresponding eigenvector **x**, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eivenvector **x**.

Proof. Suppose λ is an eigenvalue of A with corresponding eigenvector \mathbf{x} . This means $A\mathbf{x} = \lambda \mathbf{x}$. Now multiply both sides of this equation with A^{-1} .

 $A^{-1}(A\mathbf{x}) = A^{-1}(\lambda \mathbf{x})$ $(A^{-1}A\mathbf{x}) = \lambda A^{-1}\mathbf{x}$ $I\mathbf{x} = \lambda A^{-1}\mathbf{x}$ $\mathbf{x} = \lambda A^{-1}\mathbf{x}$ $\frac{1}{\lambda}(\mathbf{x}) = \frac{1}{\lambda}(\lambda A^{-1}\mathbf{x})$ $\frac{1}{\lambda}\mathbf{x} = A^{-1}\mathbf{x}$

Now observe that the equation $A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$ means that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eivenvector \mathbf{x} . The proof is complete.

- 12. Suppose $B = \{1, x, e^x, xe^x\}$ is the basis for a subspace W of the space of continuous functions $C(-\infty, \infty)$, and $T: W \to W$ is the linear transformation defined as $T(f) = D_x[f]$ (i.e. T(f) equals the derivative of f).
 - (a) Find the matrix for T relative to the basis B.

$$A = [[T(1)]_B [T(x)]_B [T(e^x)]_B [T(xe^x)]_B]$$

= $[[D_x(1)]_B [D_x(x)]_B [D_x(e^x)]_B [D_x(xe^x)]_B]$
= $[[0]_B [1]_B [e^x]_B [e^x + xe^x]_B]$
= $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

(b) Find the kernel of T

 $\ker(T) = \{a + 0x + 0e^x + 0xe^x : a \in \mathbb{R}\}$ (since only constant functions have derivatives that are 0.)

(c) Find the rank of T

From part (b) above, we can see that $\operatorname{nullity}(T) = 1$. Since $\dim(W) = \operatorname{nullity}(T) + \operatorname{rank}(T)$, we get $4 = \operatorname{nullity}(T) + \operatorname{rank}(T)$ or $4 = 1 + \operatorname{rank}(T)$. Thus the rank of T is 3.

13. Suppose A is a fixed 2×2 matrix. Prove that the set $W = \{X \in M_{2,2} : XA = AX\}$ is a subspace of $M_{2,2}$.

(1) Suppose matrices B and C are in W. This means BA = AB and CA = AC. Then (B+C)A = BA + CA = AB + AC = A(B+C). So (B+C)A = A(B+C), which means B+C is in W. Thus W is closed under addition.

(2) Suppose matrix B is in W and $c \in \mathbb{R}$. Since B is in W, we have BA = AB. Now notice that (cB)A = c(BA) = c(AB) = A(cB). So (cB)A = A(cB), which means cB is in W. Thus W is closed under scalar multiplication.

Considerations (1) and (2) above show that W is a subspace of $M_{2,2}$.

- 14. This problem concerns the matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.
 - (a) Find all eigenvalues for A.

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 \\ 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0$$

Thus the only eigenvalue is $\lambda = 1$ (multiplicity 2).

(b) Find all eigenspaces for A.

$$N(1I - A) = N\left(\begin{bmatrix} 0 & 0 \\ -2 & 0 \end{bmatrix}\right) = N\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = \left\{\begin{bmatrix} 0 \\ t \end{bmatrix} : t \in \mathbb{R}\right\} = \operatorname{span}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

Thus span $\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$ is the only eigenspace.

(c) Is A diagonalizable? Explain.

No. All eigenvectors lie on the one-dimensional subspace span $\begin{pmatrix} 0 \\ 1 \end{bmatrix}$. There does not exist a basis of \mathbb{R}^2 consisting of eigenvectors. Thus the given matrix is not diagonalizable.