Name: \qquad R. Hammack

Score: \qquad

1. Suppose $\mathbf{u}=\left[\begin{array}{r}1 \\ -2 \\ -2\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], A=\left[\begin{array}{rrr}2 & -1 & 4 \\ 3 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 3 \\ -1 & 5 \\ 2 & 1\end{array}\right]$.
(a) Find \mathbf{x} if $2 \mathbf{u}-2 \mathbf{x}=\mathbf{v} . \quad \mathbf{x}=\left[\begin{array}{c}1 / 2 \\ -3 \\ -3\end{array}\right]$ (Work omitted. You would have to show it to get full credit.)
(b) $\quad A \mathbf{u}=\left[\begin{array}{r}-4 \\ 1\end{array}\right]$
(c) $\quad A B=\left[\begin{array}{cc}11 & 5 \\ 2 & 14\end{array}\right]$
(d) $\quad B A=\left[\begin{array}{rrr}11 & 2 & 4 \\ 13 & 6 & -4 \\ 7 & -1 & 8\end{array}\right]$
(e) $\quad A+B^{T}=\left[\begin{array}{rrr}3 & -2 & 6 \\ 6 & 6 & 1\end{array}\right]$
(f) Give a basis for the column space of A.

You can see that the first two columns of A are linearly independent. Thus the span of these two columns is a two-dimensional subspace of \mathbb{R}^{2}. Since \mathbb{R}^{2} is two-dimensional it follows that the first two columns of A span \mathbb{R}^{2}, so they form a basis for \mathbb{R}^{2}. Consequently, these first two vectors form a basis for the column space.
$B=\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$ (There are many other correct answers.)
(g) $\operatorname{nullity}(A)=$

Since $3=\operatorname{rank}(A)+\operatorname{nullity}(A), \operatorname{and} \operatorname{rank}(A)=2$ from part (f) above, it follows that nullity $(A)=1$.
2. Solve the system: $\left\{\begin{aligned} w+2 y+z & =1 \\ -2 w+x+y-z & =-1 \\ w+x+7 y+3 z & =2\end{aligned}\right.$
$\left[\begin{array}{rrrrr}1 & 0 & 2 & 1 & 1 \\ -2 & 1 & 1 & -1 & -1 \\ 1 & 1 & 7 & 3 & 2\end{array}\right] \rightarrow\left[\begin{array}{lllll}1 & 0 & 2 & 1 & 1 \\ 0 & 1 & 5 & 1 & 1 \\ 0 & 1 & 5 & 2 & 1\end{array}\right] \rightarrow\left[\begin{array}{lllll}1 & 0 & 2 & 1 & 1 \\ 0 & 1 & 5 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{lllll}1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 5 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$
Solution: $\left\{\begin{array}{l}w=1-2 t \\ x=1-5 t \\ y=0\end{array}\right.$
3. Solve the system: $\left\{\begin{array}{rlr}x+y+z & =2 \\ x-y-z & =0 \\ x+y-z & =-1\end{array}\right.$
$\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 1 & -1 & -1 & 0 \\ 1 & 1 & -1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 0 & -2 & -2 & -2 \\ 0 & 0 & -2 & -3\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 / 2\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 1 & 0 & 1 / 2 \\ 0 & 1 & 0 & -1 / 2 \\ 0 & 0 & 1 & 3 / 2\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 / 2 \\ 0 & 0 & 1 & 3 / 2\end{array}\right]$

Solution: $\left\{\begin{array}{lll}x & = & 1 \\ y & = & -1 / 2 \\ z & = & 3 / 2\end{array}\right.$
4. Find the inverse of $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & 3\end{array}\right]$
$\left[\begin{array}{lll|lll}1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 & 1 & 0 \\ 1 & 0 & 3 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 0 & 3 & 0 & -2 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 0 & 1\end{array}\right]$
Thus $A^{-1}=\left[\begin{array}{rrr}3 & 0 & -2 \\ 0 & 1 & -1 \\ -1 & 0 & 1\end{array}\right]$
5. $\quad\left|\begin{array}{lll}3 & 0 & 5 \\ 1 & 1 & 2 \\ 3 & 3 & 3\end{array}\right|=3\left|\begin{array}{ll}1 & 2 \\ 3 & 3\end{array}\right|+0\left|\begin{array}{ll}1 & 2 \\ 3 & 3\end{array}\right|+5\left|\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right|=3(3-6)+6(3-3)=-9$
6. Suppose linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{r}2 \\ -2\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}5 \\ 1\end{array}\right]$. Find the standard matrix for T.

Note: $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)-T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}5 \\ 1\end{array}\right]-\left[\begin{array}{r}2 \\ -2\end{array}\right]=\left[\begin{array}{l}3 \\ 3\end{array}\right]$
Standard matrix is $A=\left[T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right) T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)\right]=\left[\begin{array}{rr}2 & 3 \\ -2 & 3\end{array}\right]$
7. Consider the matrix $A=\left[\begin{array}{llll}1 & 0 & 3 & 2 \\ 1 & 2 & 7 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 5 & 1\end{array}\right]$.
(a) Find a basis for the row space of A.
$\left[\begin{array}{rrrr}1 & 0 & 3 & 2 \\ 1 & 2 & 7 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 5 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & 3 & 2 \\ 0 & 2 & 4 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & 3 & 2 \\ 0 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -2\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & -2\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ $B=\left\{\left[\begin{array}{llll}1 & 0 & 3 & 0\end{array}\right],\left[\begin{array}{llll}0 & 1 & 2 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]\right\}$
(b) Find a basis for the nullspace of A.

From the row reduction above, we can see that the nullspace of A is $\left\{\left[\begin{array}{r}-3 t \\ -2 t \\ t \\ 0\end{array}\right]: t \in \mathbb{R}\right\}=\operatorname{span}\left(\left[\begin{array}{r}-3 \\ -2 \\ 1 \\ 0\end{array}\right]\right)$.
Thus a basis for the nullspace is $B=\left\{\left[\begin{array}{r}-3 \\ -2 \\ 1 \\ 0\end{array}\right]\right\}$
8. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, is a linear transformation defined as $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}y-x \\ x+y+z\end{array}\right]$.

Suppose $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, is a linear transformation defined as $S\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x-y \\ x \\ y\end{array}\right]$.
Find the standard matrix for $S \circ T$.
Matrix for T is $A=\left[\begin{array}{rrr}-1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$

Matrix for S is $B=\left[\begin{array}{rr}1 & -1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$
Matrix for $S \circ T$ is $B A=\left[\begin{array}{rrr}-2 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
9. Suppose a matrix A satisfies $P^{-1} A P=D$, where $P=\left[\begin{array}{lll}1 & 1 & 1 \\ 4 & 2 & 0 \\ 3 & 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3\end{array}\right]$.

List the eigenvalues of A, and for each eigenvalue, give a basis for its eigenspace.
(This can be done without computations.)

You can read off the eigenvectors from D and the eigenvectors from P.
Eigenvalue $\lambda=3$ has an eigenspace with basis $\left\{\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$

Eigenvalue $\lambda=4$ has an eigenspace with basis $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$
10. Decide if the polynomials $\left\{2-x, 2 x-x^{2}, 6-5 x+x^{2}\right\}$ in P_{2} are linearly independent or linearly dependent.

By inspection, you can see that $-3(2-x)+1\left(2 x-x^{2}\right)+1\left(6-5 x+x^{2}\right)=0$, so the polynomials are linearly dependent.
11. Suppose A is an invertible matrix. Prove that if λ is an eigenvalue of A with corresponding eigenvector \mathbf{x}, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eivenvector \mathbf{x}.

Proof. Suppose λ is an eigenvalue of A with corresponding eigenvector \mathbf{x}.
This means $A \mathbf{x}=\lambda \mathbf{x}$.
Now multiply both sides of this equation with A^{-1}.
$A^{-1}(A \mathbf{x})=A^{-1}(\lambda \mathbf{x})$
$\left(A^{-1} A \mathbf{x}\right)=\lambda A^{-1} \mathbf{x}$
$I \mathbf{x}=\lambda A^{-1} \mathbf{x}$
$\mathbf{x}=\lambda A^{-1} \mathbf{x}$
$\frac{1}{\lambda}(\mathbf{x})=\frac{1}{\lambda}\left(\lambda A^{-1} \mathbf{x}\right)$
$\frac{1}{\lambda} \mathbf{x}=A^{-1} \mathbf{x}$
Now observe that the equation $A^{-1} \mathbf{x}=\frac{1}{\lambda} \mathbf{x}$ means that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eivenvector \mathbf{x}. The proof is complete.
12. Suppose $B=\left\{1, x, e^{x}, x e^{x}\right\}$ is the basis for a subspace W of the space of continuous functions $C(-\infty, \infty)$, and $T: W \rightarrow W$ is the linear transformation defined as $T(f)=D_{x}[f]$ (i.e. $T(f)$ equals the derivative of f).
(a) Find the matrix for T relative to the basis B.

$$
\begin{aligned}
& A=\left[[T(1)]_{B}[T(x)]_{B}\left[T\left(e^{x}\right)\right]_{B}\left[T\left(x e^{x}\right)\right]_{B}\right] \\
& =\left[\left[D_{x}(1)\right]_{B}\left[D_{x}(x)\right]_{B}\left[D_{x}\left(e^{x}\right)\right]_{B}\left[D_{x}\left(x e^{x}\right)\right]_{B}\right] \\
& =\left[[0]_{B}[1]_{B}\left[e^{x}\right]_{B}\left[e^{x}+x e^{x}\right]_{B}\right] \\
& =\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(b) Find the kernel of T
$\operatorname{ker}(T)=\left\{a+0 x+0 e^{x}+0 x e^{x}: a \in \mathbb{R}\right\}$
(since only constant functions have derivatives that are 0 .)
(c) Find the rank of T

From part (b) above, we can see that nullity $(T)=1$.
Since $\operatorname{dim}(W)=\operatorname{nullity}(T)+\operatorname{rank}(T)$, we get $4=\operatorname{nullity}(T)+\operatorname{rank}(T)$ or $4=1+\operatorname{rank}(T)$.
Thus the rank of T is 3 .
13. Suppose A is a fixed 2×2 matrix. Prove that the set $W=\left\{X \in M_{2,2}: X A=A X\right\}$ is a subspace of $M_{2,2}$.
(1) Suppose matrices B and C are in W.

This means $B A=A B$ and $C A=A C$.
Then $(B+C) A=B A+C A=A B+A C=A(B+C)$.
So $(B+C) A=A(B+C)$, which means $B+C$ is in W.
Thus W is closed under addition.
(2) Suppose matrix B is in W and $c \in \mathbb{R}$.

Since B is in W, we have $B A=A B$.
Now notice that $(c B) A=c(B A)=c(A B)=A(c B)$.
So $(c B) A=A(c B)$, which means $c B$ is in W.
Thus W is closed under scalar multiplication.

Considerations (1) and (2) above show that W is a subspace of $M_{2,2}$.
14. This problem concerns the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$.
(a) Find all eigenvalues for A.

$$
|\lambda I-A|=\left|\begin{array}{cc}
\lambda-1 & 0 \\
2 & \lambda-1
\end{array}\right|=(\lambda-1)^{2}=0
$$

Thus the only eigenvalue is $\lambda=1$ (multiplicity 2).
(b) Find all eigenspaces for A.
$N(1 I-A)=N\left(\left[\begin{array}{rr}0 & 0 \\ -2 & 0\end{array}\right]\right)=N\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right)=\left\{\left[\begin{array}{l}0 \\ t\end{array}\right]: t \in \mathbb{R}\right\}=\operatorname{span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$
Thus span $\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$ is the only eigenspace.
(c) Is A diagonalizable? Explain.

No. All eigenvectors lie on the one-dimensional subspace span $\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
There does not exist a basis of \mathbb{R}^{2} consisting of eigenvectors.
Thus the given matrix is not diagonalizable.

