Name: \qquad R. Hammack

Score: \qquad

1. Suppose $\mathbf{u}=\left[\begin{array}{r}1 \\ -2 \\ -2\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], A=\left[\begin{array}{rrr}2 & -1 & 4 \\ 3 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 3 \\ -1 & 5 \\ 2 & 1\end{array}\right]$.
(a) Find \mathbf{x} if $2 \mathbf{u}-2 \mathbf{x}=\mathbf{v}$.
(b) $\quad A \mathbf{u}=$
(c) $A B=$
(d) $B A=$
(e) $\quad A+B^{T}=$
(f) Give a basis for the column space of A.
(g) $\operatorname{nullity}(A)=$
2. Solve the system: $\left\{\begin{aligned} w+2 y+z & =1 \\ -2 w+x+y-z & =-1 \\ w+x+7 y+3 z & =2\end{aligned}\right.$
3. Solve the system: $\left\{\begin{aligned} x+y+z & =2 \\ x-y-z & =0 \\ x+y-z & =-1\end{aligned}\right.$
4. Find the inverse of $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & 3\end{array}\right]$
5. $\quad\left|\begin{array}{lll}3 & 0 & 5 \\ 1 & 1 & 2 \\ 3 & 3 & 3\end{array}\right|=$
6. Suppose linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{r}2 \\ -2\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}5 \\ 1\end{array}\right]$. Find the standard matrix for T.
7. Consider the matrix $A=\left[\begin{array}{llll}1 & 0 & 3 & 2 \\ 1 & 2 & 7 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 5 & 1\end{array}\right]$.
(a) Find a basis for the row space of A.
(b) Find a basis for the nullspace of A.
8. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, is a linear transformation defined as $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}y-x \\ x+y+z\end{array}\right]$. Suppose $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, is a linear transformation defined as $S\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x-y \\ x \\ y\end{array}\right]$.
Find the standard matrix for $S \circ T$.
9. Suppose a matrix A satisfies $P^{-1} A P=D$, where $P=\left[\begin{array}{lll}1 & 1 & 1 \\ 4 & 2 & 0 \\ 3 & 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3\end{array}\right]$.

List the eigenvalues of A, and for each eigenvalue, give a basis for its eigenspace.
(This can be done without computations.)
10. Decide if the polynomials $\left\{2-x, 2 x-x^{2}, 6-5 x+x^{2}\right\}$ in P_{2} are linearly independent or linearly dependent.
11. Suppose A is an invertible matrix. Prove that if λ is an eigenvalue of A with corresponding eigenvector \mathbf{x}, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eivenvector \mathbf{x}.
12. Suppose $B=\left\{1, x, e^{x}, x e^{x}\right\}$ is the basis for a subspace W of the space of continuous functions $C(-\infty, \infty)$, and $T: W \rightarrow W$ is the linear transformation defined as $T(f)=D_{x}[f]$ (i.e. $T(f)$ equals the derivative of f).
(a) Find the matrix for T relative to the basis B.
(b) Find the kernel of T
(c) Find the rank of T
13. Suppose A is a fixed 2×2 matrix. Prove that the set $W=\left\{X \in M_{2,2}: X A=A X\right\}$ is a subspace of $M_{2,2}$.
14. This problem concerns the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$.
(a) Find all eigenvalues for A.
(b) Find all eigenspaces for A.
(c) Is A diagonalizable? Explain.

