Linear Algebra (Math 310)

Name: ______ R. Hammack Score: ______ 1. Suppose $\mathbf{u} = \begin{bmatrix} 1\\ -2\\ -2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$, $A = \begin{bmatrix} 2 & -1 & 4\\ 3 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3\\ -1 & 5\\ 2 & 1 \end{bmatrix}$. (a) Find \mathbf{x} if $2\mathbf{u} - 2\mathbf{x} = \mathbf{v}$.

(b) $A\mathbf{u} =$

(c) AB =

(d) BA =

(e) $A + B^T =$

(f) Give a basis for the column space of A.

(g) $\operatorname{nullity}(A) =$

2. Solve the system:
$$\begin{cases} w + 2y + z = 1\\ -2w + x + y - z = -1\\ w + x + 7y + 3z = 2 \end{cases}$$

		x+y+z	=	2
3.	Solve the system:	x - y - z	=	0
	-	x+y-z	=	-1

4. Find the inverse of
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 3 \\ 1 & 0 & 3 \end{bmatrix}$$

6. Suppose linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies $T\left(\begin{bmatrix} 1\\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2\\ -2 \end{bmatrix}$ and $T\left(\begin{bmatrix} 1\\ 1 \end{bmatrix} \right) = \begin{bmatrix} 5\\ 1 \end{bmatrix}$. Find the standard matrix for T.

7. Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 1 & 2 & 7 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 5 & 1 \end{bmatrix}$$
.

(a) Find a basis for the row space of A.

(b) Find a basis for the nullspace of A.

8. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^2$, is a linear transformation defined as $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} y-x \\ x+y+z \end{bmatrix}$. Suppose $S : \mathbb{R}^2 \to \mathbb{R}^3$, is a linear transformation defined as $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x-y \\ x \\ y \end{bmatrix}$. Find the standard matrix for $S \circ T$. 9. Suppose a matrix A satisfies $P^{-1}AP = D$, where $P = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. List the eigenvalues of A, and for each eigenvalue, give a basis for its eigenspace.

(This can be done without computations.)

10. Decide if the polynomials $\{2-x, 2x-x^2, 6-5x+x^2\}$ in P_2 are linearly independent or linearly dependent.

11. Suppose A is an invertible matrix. Prove that if λ is an eigenvalue of A with corresponding eigenvector **x**, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eivenvector **x**.

- 12. Suppose $B = \{1, x, e^x, xe^x\}$ is the basis for a subspace W of the space of continuous functions $C(-\infty, \infty)$, and $T: W \to W$ is the linear transformation defined as $T(f) = D_x[f]$ (i.e. T(f) equals the derivative of f).
 - (a) Find the matrix for T relative to the basis B.

(b) Find the kernel of T

(c) Find the rank of T

13. Suppose A is a fixed 2×2 matrix. Prove that the set $W = \{X \in M_{2,2} : XA = AX\}$ is a subspace of $M_{2,2}$.

- 14. This problem concerns the matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.
 - (a) Find all eigenvalues for A.

(b) Find all eigenspaces for A.

(c) Is A diagonalizable? Explain.