MATH 310, Section 6.3 Solutions

4. $T(x, y)=(4 x+y, 0,2 x-3 y)$ has standard matrix $\left[\begin{array}{rr}4 & 1 \\ 0 & 0 \\ 2 & -3\end{array}\right]$
5. $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T_{1}(x, y)=(x-2 y, 2 x+3 y)$ has standard matrix $\left[\begin{array}{rr}1 & -2 \\ 2 & 3\end{array}\right]$
$T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T_{2}(x, y)=(y, 0)$ has standard matrix $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
The standard matrix for $T_{2} \circ T_{1}$ is $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{rr}1 & -2 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 0 & 0\end{array}\right]$
The standard matrix for $T_{1} \circ T_{2}$ is $\left[\begin{array}{rr}1 & -2 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]$
6. $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}\right)$ has standard matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$

You can see that $\operatorname{det}(A)=1$, so A is invertible. Now find its inverse.
$\left[\begin{array}{lll|lll}1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1\end{array}\right]$
Thus $A^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$, and this is the standard matrix for T^{-1}.
Consequently, $T^{-1}\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ -x_{1}+x_{2} \\ -x_{2}+x_{3}\end{array}\right]$
Therefore $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}\right)$
38. $T(x, y)=(x+y, 3 x+3 y)$ has standard matrix $A=\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]$.

Since $|A|=0$, this matrix is not invertible, so T is not invertible.
50. Let $T: P_{2} \rightarrow P_{4}$ be given by $T(p)=x^{2} p$. Find the matrix for T relative to the bases $B=\left\{1, x, x^{2}\right\}$ and $B^{\prime}=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$
$A=\left[[T(1)]_{B^{\prime}}[T(x)]_{B^{\prime}}\left[T\left(x^{2}\right)\right]_{B^{\prime}}\right]=\left[\left[x^{2}\right]_{B^{\prime}}\left[x^{3}\right]_{B^{\prime}}\left[x^{4}\right]_{B^{\prime}}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Checking, $A\left[a+b x+c x^{2}\right]_{B}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ a \\ b \\ c\end{array}\right]=\left[a x^{2}+b x^{3}+c x^{4}\right]_{B^{\prime}}=\left[T\left(a+b x+c x^{2}\right)\right]_{B^{\prime}}$.

