4.
$$T(x, y) = (4x + y, 0, 2x - 3y)$$
 has standard matrix $\begin{bmatrix} 4 & 1 \\ 0 & 2 & -3 \end{bmatrix}$
30. $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$, $T_1(x, y) = (x - 2y, 2x + 3y)$ has standard matrix $\begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix}$
 $T_2 : \mathbb{R}^2 \to \mathbb{R}^2$, $T_2(x, y) = (y, 0)$ has standard matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
The standard matrix for $T_2 \circ T_1$ is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix}$
The standard matrix for $T_1 \circ T_2$ is $\begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$
36. $T(x_1, x_2, x_3) = (x_1, x_1 + x_2, x_1 + x_2 + x_3)$ has standard matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$
You can see that det(A) = 1, so A is invertible. Now find its inverse.
 $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_1 + x_2 \\ -x_2 + x_3 \end{bmatrix}$
Therefore $\boxed{T^{-1}(x_1, x_2, x_3) = (x_1, x_2 - x_1, x_3 - x_2)}$
38. $T(x, y) = (x + y, 3x + 3y)$ has standard matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 \end{bmatrix}$.
Since $|A| = 0$, this matrix is not invertible, so $\boxed{T$ is not invertible.
50. Let $T : P_2 \to P_1$ be given by $T(p) = x^2p$. Find the matrix for T relative to the bases $B = \{1, x, x^2\}$ and $B' = \{1, x, x^2, x^3, x^4\}$

$$A = [[T(1)]_{B'} [T(x)]_{B'} [T(x^2)]_{B'}] = [[x^2]_{B'} [x^3]_{B'} [x^4]_{B'}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Checking, $A[a+bx+cx^2]_B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ a \\ b \\ c \end{bmatrix} = [ax^2+bx^3+cx^4]_{B'} = [T(a+bx+cx^2)]_{B'}.$