MATH 310, Section 6.2 Solutions

4. $T: P_{2} \rightarrow P_{1}, T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{1}+2 a_{2} x . \operatorname{ker}(T)=\left\{a_{0}+0 x+0 x^{2}: a_{0} \in \mathbb{R}\right\}$.
5. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is defined as $T(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
A is already in reduced row echelon form, so we can just read off the information.
(a) $\operatorname{ker}(T)=N(A)=\operatorname{span}\left(\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 1 \\ -1\end{array}\right]\right)$
(b) $\operatorname{nullity}(T)=2$.
(c) $\operatorname{range}(T)=\operatorname{col}(A)=\mathbb{R}^{2}$.
(d) $\operatorname{rank}(T)=2$.
6. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has rank 1 .

By Theorem 6.5, $\operatorname{rank}(T)+\operatorname{nullity}(T)=3$, hence $\operatorname{nullity}(T)=2$. This means the kernel of T is two-dimensional, so it is a plane. Since the rank is 1 , the range is one-dimensional, so it is a line.
38. (a) $M_{2,3}$ is isomorphic to \mathbb{R}^{6}.
(b) P_{6} is isomorphic to \mathbb{R}^{7} but not to \mathbb{R}^{6}.
(c) $C[0,6]$ is infinite-dimensional so it is not isomorphic to \mathbb{R}^{6}.
(d) $M_{6,1}$ is isomorphic to \mathbb{R}^{6}.
(e) P_{5} is isomorphic to \mathbb{R}^{6}.
(f) $\left\{\left(x_{1}, x_{2}, x_{3}, 0, x_{4}, x_{5}, x_{6}\right): x_{i} \in \mathbb{R}\right\}$ is isomorphic to \mathbb{R}^{6}.
46. Verify that $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 4 & 1\end{array}\right]$ defines a linear transformation T that is one-to-one and onto.

Doing one row operation, $\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 4 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 7 \\ 0 & 4 & 1\end{array}\right]$, and you can see that $\operatorname{det}(A)=-24 \neq 0$.
Now consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined as $T(\mathbf{x})=A \mathbf{x}$.
To show T is one-to-one, we must show that the preimage of any vector $\mathbf{b} \in \mathbb{R}^{3}$ consists of a single vector. This preimage consists of all vectors $\mathbf{x} \in \mathbb{R}^{3}$ for which $T(\mathbf{x})=\mathbf{b}$, that is for which $A \mathbf{x}=\mathbf{b}$. By the Equivalent Conditions for a Square Matrix (Page 239), parts 2 and 5 show that $A \mathbf{x}=\mathbf{b}$ has exactly one solution. Thus the preimage of \mathbf{b} consists of a single vector, so T is one-to-one.

To show that T is onto, we must show that any $\mathbf{b} \in \mathbb{R}^{3}$ has a preimage in \mathbb{R}^{3}. But that follows from the fact mentioned above, that $T(\mathbf{x})=A \mathbf{x}=\mathbf{b}$ has exactly one solution, so this solution is a preimage of \mathbf{b}.

