MATH 310, Section 6.1 Solutions

4. $T\left(v_{1}, v_{2}, v_{3}\right)=\left(2 v_{1}+v_{2}, 2 v_{2}-3 v_{1}, v_{1}-v_{3}\right)$
(a) $T(-4,5,1)=(2 \cdot(-4)+5,2 \cdot 5-3 \cdot(-4),-4-1)=(-3,22,-5)$
(b) We need to find all the points $\left(v_{1}, v_{2}, v_{3}\right)$ for which

$$
\begin{aligned}
& T\left(v_{1}, v_{2}, v_{3}\right)=\left(2 v_{1}+v_{2}, 2 v_{2}-3 v_{1}, v_{1}-v_{3}\right)=(4,1,-1) . \\
& \text { This gives the following system: }\left\{\begin{array}{rl}
2 v_{1}+v_{2} & =4 \\
-3 v_{1}+2 v_{2} & = \\
v_{1} & -v_{3}
\end{array}=-1\right.
\end{aligned}
$$

$\left[\begin{array}{rrrr}2 & 1 & 0 & 4 \\ -3 & 2 & 0 & 1 \\ 1 & 0 & -1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & -1 & -1 \\ -3 & 2 & 0 & 1 \\ 2 & 1 & 0 & 4\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & -1 & -1 \\ 0 & 2 & -3 & -2 \\ 0 & 1 & 2 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & -1 & -1 \\ 0 & 1 & 2 & 6 \\ 0 & 2 & -3 & -2\end{array}\right] \rightarrow$
$\left[\begin{array}{rrrr}1 & 0 & -1 & -1 \\ 0 & 1 & 2 & 6 \\ 0 & 0 & -7 & -14\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & -1 & -1 \\ 0 & 1 & 2 & 6 \\ 0 & 0 & 1 & 2\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2\end{array}\right]\left\{\begin{array}{l}v_{1}=1 \\ v_{2}= \\ v_{3}=\end{array}\right.$
Thus the preimage of $(4,1,-2)$ is $(1,2,2)$.
8. Is $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined as $T(x, y, z)=(x+y, x-y, z)$ a linear transformation?

Notice that:

$$
\begin{aligned}
& \text { (a) } T\left((x, y, z)+\left(x^{\prime}+y^{\prime}+z^{\prime}\right)\right)=T\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)=\left(x+x^{\prime}+y+y^{\prime}, x+x^{\prime}-\left(y+y^{\prime}\right), z+z^{\prime}\right) \\
&=(x+y, x-y, z)+\left(x^{\prime}+y^{\prime}, x^{\prime}-y^{\prime}, z^{\prime}\right)=T(x, y, z)+T\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
& \text { (b) } T(c(x, y, z))=T(c x, c y, c z)=(c x+c y, c x-c y, c z)=c(x+y, x-y, z)=c T(x, y, z)
\end{aligned}
$$

Therefore T is linear.
18. $T(-2,4,-1)=T(-2(1,0,0)+4(0,1,0)-(0,0,1))=T(-2(1,0,0))+T(4(0,1,0))-T(0,0,1)=$ $-2 T(1,0,0)+4 T(0,1,0))-T(0,0,1)=-2(2,4,-1)+4(1,3,-2)-(0-2,2)=(0,6,-8)$
38. $T\left(\left[\begin{array}{rr}1 & 3 \\ -1 & 4\end{array}\right]\right)=T\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+3\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]-\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+4\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)=$
$T\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right)+3 T\left(\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)-T\left(\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right)+4 T\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)=$
$\left[\begin{array}{rr}1 & -1 \\ 0 & 2\end{array}\right]+3\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right]-\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]+4\left[\begin{array}{rr}3 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{rr}12 & -1 \\ 7 & 4\end{array}\right]$
50. Prove that the set of all fixed points of a linear transformation $T: V \rightarrow V$ is a subspace of V.

Proof. The set of fixed points is $W=\{\mathbf{u} \in V: T(\mathbf{u})=\mathbf{u}\}$.
Note that W is closed under addition: Suppose $\mathbf{u}, \mathbf{v} \in W$.
This means $T(\mathbf{u})=\mathbf{u}$ and $T(\mathbf{v})=\mathbf{v}$.
Then $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})=\mathbf{u}+\mathbf{v}$, so $\mathbf{u}+\mathbf{v}$ is a fixed point, so it is in W.
Next observe that W is closed under scalar multiplication:
Suppose $\mathbf{u} \in W$ and $c \in \mathbb{R}$.
Then $T(c \mathbf{u})=c T(\mathbf{u})=c \mathbf{u}$.
Thus $c \mathbf{u}$ is a fixed point, so it is in W.
It follows from Theorem 4.5 that the set of fixed points is a subspace.

