MATH 310, Section 4.7 Solutions

6. Suppose
$$B = \{(4, 0, 7, 3), (0, 5, -1, -1), (-3, 4, 2, 1), (0, 1, 5, 0)\}$$
 and $[\mathbf{x}]_B = [-2, 3, 4, 1]^T$.
Since $[\mathbf{x}]_B = [-2, 3, 4, 1]^T = \begin{bmatrix} -2\\ 3\\ 4\\ 1 \end{bmatrix}$, it follows
 $\mathbf{x} = -2(4, 0, 7, 3) + 3(0, 5, -1, -1) + 4(-3, 4, 2, 1) + 1(0, 1, 5, 0) = (-20, 32, -4, -5).$
Given that the standard basis for \mathbb{R}^4 is $S = \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$, we have
 $\boxed{[\mathbf{x}]_S = [-20, 32, -4, -5]^T = \begin{bmatrix} -20\\ 32\\ -4\\ -5 \end{bmatrix}}.$

- 8. Find the coordinate of $\mathbf{x} = (-26, 32)$ relative to the basis $B = \{(-6, 7), (4, -3)\}$.
 - This involves finding a solution to x(-6,7) + y(4,-3) = (-26,32), which gives rise to the system: $\begin{cases}
 -6x + 4y &= -26 \\
 7x - 3y &= -22
 \end{cases}$

$$\begin{bmatrix} -7x - 3y &= 32 \\ -6 & 4 & -26 \\ 7 & -3 & 32 \end{bmatrix} \rightarrow \begin{bmatrix} -6 & 4 & -26 \\ 1 & 1 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 6 \\ -6 & 4 & -26 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 6 \\ 0 & 10 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 6 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \end{bmatrix}$$

Thus
$$5(-6,7) + 1(4,-3) = (-26,32)$$
, so $\begin{bmatrix} \mathbf{x} \end{bmatrix}_B = \begin{bmatrix} 5\\1 \end{bmatrix}$

14. Find the transition matrix from $B = \{(1,0), (0,1)\}$ to $B' = \{(1,1), (5,6)\}$. Setting up the problem as in Theorem 4.21, we get

$\begin{bmatrix} 1 & 5 & & 1 & 0 \\ 1 & 6 & & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 & & 1 & 0 \\ 0 & 1 & & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & & 6 & -5 \\ 0 & 1 & & -1 & 1 \end{bmatrix}, $ so the transition matrix is the transition matrix in the transition matrix is the transition matrix.	natrix is $P^{-1} = \begin{bmatrix} 6 & -5 \\ -1 & 1 \end{bmatrix}$
--	---

30. Find the coordinate matrix of $p = 3x^2 + 114x + 13$ relative to the standard basis $S = \{1, x, x^2\}$ of P_2 .

Since
$$p = 13 \cdot 1 + 114 \cdot x + 3 \cdot x^2$$
, it follows that $\begin{bmatrix} p \end{bmatrix}_S = \begin{bmatrix} 13 \\ 114 \\ 3 \end{bmatrix}$.

36. Suppose P is the transition matrix from B'' to B' and Q is the transition matrix from B' to B. What is the transition matrix from B to B''?

Since P is the transition matrix from B'' to B', we have $P[\mathbf{x}]_{B''} = [\mathbf{x}]_{B'}$, so

$$[\mathbf{x}]_{B''} = P^{-1}[\mathbf{x}]_{B'}.$$
 (1)

Since Q is the transition matrix from B' to B, we have $Q[\mathbf{x}]_{B'} = [\mathbf{x}]_B$, so

$$[\mathbf{x}]_{B'} = Q^{-1}[\mathbf{x}]_B. \tag{2}$$

Taking equation (1) and replacing the $[\mathbf{x}]_{B'}$ with $Q^{-1}[\mathbf{x}]_B$ (By equation (2)) we get

$$[\mathbf{x}]_{B''} = P^{-1}Q^{-1}[\mathbf{x}]_B.$$
(3)

From this, $(P^{-1}Q^{-1})[\mathbf{x}]_B = [\mathbf{x}]_{B''}$, which means $P^{-1}Q^{-1} = (QP)^{-1}$ is the transition matrix from B to B''.