MATH 310, Section 4.7 Solutions

6. Suppose $B=\{(4,0,7,3),(0,5,-1,-1),(-3,4,2,1),(0,1,5,0)\}$ and $[\mathbf{x}]_{B}=[-2,3,4,1]^{T}$.

Since $[\mathbf{x}]_{B}=[-2,3,4,1]^{T}=\left[\begin{array}{r}-2 \\ 3 \\ 4 \\ 1\end{array}\right]$, it follows
$\mathrm{x}=-2(4,0,7,3)+3(0,5,-1,-1)+4(-3,4,2,1)+1(0,1,5,0)=(-20,32,-4,-5)$.
Given that the standard basis for \mathbb{R}^{4} is $S=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$, we have
$[\mathbf{x}]_{S}=[-20,32,-4,-5]^{T}=\left[\begin{array}{r}-20 \\ 32 \\ -4 \\ -5\end{array}\right]$.
8. Find the coordinate of $\mathbf{x}=(-26,32)$ relative to the basis $B=\{(-6,7),(4,-3)\}$.

This involves finding a solution to $x(-6,7)+y(4,-3)=(-26,32)$, which gives rise to the system: $\left\{\begin{array}{rlr}-6 x+4 y & =-26 \\ 7 x-3 y & =32\end{array}\right.$
$\left[\begin{array}{rrr}-6 & 4 & -26 \\ 7 & -3 & 32\end{array}\right] \rightarrow\left[\begin{array}{rrr}-6 & 4 & -26 \\ 1 & 1 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 & 6 \\ -6 & 4 & -26\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 & 6 \\ 0 & 10 & 10\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 6 \\ 0 & 1 & 1\end{array}\right] \rightarrow$
$\left[\begin{array}{lll}1 & 0 & 5 \\ 0 & 1 & 1\end{array}\right]$
Thus $5(-6,7)+1(4,-3)=(-26,32)$, so $[\mathbf{x}]_{B}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$.
14. Find the transition matrix from $B=\{(1,0),(0,1)\}$ to $B^{\prime}=\{(1,1),(5,6)\}$.

Setting up the problem as in Theorem 4.21, we get

$$
\left[\begin{array}{ll|ll}
1 & 5 & 1 & 0 \\
1 & 6 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|rr}
1 & 5 & 1 & 0 \\
0 & 1 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|rr}
1 & 0 & 6 & -5 \\
0 & 1 & -1 & 1
\end{array}\right], \text { so } \quad \text { the transition matrix is } P^{-1}=\left[\begin{array}{rr}
6 & -5 \\
-1 & 1
\end{array}\right]
$$

30. Find the coordinate matrix of $p=3 x^{2}+114 x+13$ relative to the standard basis $S=\left\{1, x, x^{2}\right\}$ of P_{2}.

Since $p=13 \cdot 1+114 \cdot x+3 \cdot x^{2}$, it follows that $[p]_{S}=\left[\begin{array}{c}13 \\ 114 \\ 3\end{array}\right]$.
36. Suppose P is the transition matrix from $B^{\prime \prime}$ to B^{\prime} and Q is the transition matrix from B^{\prime} to B. What is the transition matrix from B to $B^{\prime \prime}$?

Since P is the transition matrix from $B^{\prime \prime}$ to B^{\prime}, we have $P[\mathbf{x}]_{B^{\prime \prime}}=[\mathbf{x}]_{B^{\prime}}$, so

$$
\begin{equation*}
[\mathbf{x}]_{B^{\prime \prime}}=P^{-1}[\mathbf{x}]_{B^{\prime}} \tag{1}
\end{equation*}
$$

Since Q is the transition matrix from B^{\prime} to B, we have $Q[\mathbf{x}]_{B^{\prime}}=[\mathbf{x}]_{B}$, so

$$
\begin{equation*}
[\mathbf{x}]_{B^{\prime}}=Q^{-1}[\mathbf{x}]_{B} \tag{2}
\end{equation*}
$$

Taking equation (1) and replacing the $[\mathbf{x}]_{B^{\prime}}$ with $Q^{-1}[\mathbf{x}]_{B}$ (By equation (2)) we get

$$
\begin{equation*}
[\mathbf{x}]_{B^{\prime \prime}}=P^{-1} Q^{-1}[\mathbf{x}]_{B} \tag{3}
\end{equation*}
$$

From this, $\left(P^{-1} Q^{-1}\right)[\mathbf{x}]_{B}=[\mathbf{x}]_{B^{\prime \prime}}$, which means $P^{-1} Q^{-1}=(Q P)^{-1}$ is the transition matrix from B to $B^{\prime \prime}$.

