MATH 310, Section 4.6 Solutions

2. $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
(a) The rank of A is 1
(b) A basis for the row space is $\{(1,2,3)\}$
(c) A basis for the column space is $\{[1]\}$
3. $A=\left[\begin{array}{rrrr}2 & 4 & -3 & -6 \\ 7 & 14 & -6 & -3 \\ -2 & -4 & 1 & -2 \\ 2 & 4 & -2 & -2\end{array}\right] \rightarrow\left[\begin{array}{rrrr}2 & 4 & -3 & -6 \\ 7 & 14 & -6 & -3 \\ -2 & -4 & 1 & -2 \\ 1 & 2 & -1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 2 & -1 & -1 \\ 7 & 14 & -6 & -3 \\ 2 & 4 & -3 & -6 \\ -2 & -4 & 1 & -2\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 2 & -1 & -1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & -1 & -4\end{array}\right]$ $\rightarrow\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ From this, you can read off all the answers:
(a) The rank of A is 2 .
(b) Basis for the row space is $\{(1,2,0,3),(0,0,1,4)\}$
(c) Basis for the column space is $\left\{\left[\begin{array}{r}2 \\ 7 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{r}-3 \\ -6 \\ 1 \\ -1\end{array}\right]\right\}$
4. Find a basis for the subspace of \mathbb{R}^{4} spanned by $S=\{(2,5,-3,-2),(-2,-3,2,-5),(1,3,-2,2),(-1,-5,3,5)\}$.

For this, we find a basis of the row space of $A=\left[\begin{array}{rrrr}2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -5 & 3 & 5\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ -2 & -3 & 2 & -5 \\ 2 & 5 & -3 & -2 \\ -1 & -5 & 3 & 5\end{array}\right]$
$\rightarrow\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ 0 & 3 & -2 & -1 \\ 0 & -1 & 1 & -6 \\ 0 & -2 & 1 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ 0 & 3 & -2 & -1 \\ 0 & 1 & -1 & 6 \\ 0 & -2 & 1 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ 0 & 1 & -1 & 6 \\ 0 & 3 & -2 & -1 \\ 0 & -2 & 1 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & 1 & -16 \\ 0 & 1 & -1 & 6 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & -1 & 19\end{array}\right]$
$\rightarrow\left[\begin{array}{rrrr}1 & 0 & 1 & -16 \\ 0 & 1 & -1 & 6 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -13 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & 0 & 0\end{array}\right]$
From this, you can see that a basis for the row space (hence for the subspace spanned by the rows) is $S=\{(1,0,0,3),(0,1,0,-13),(0,0,1,-19)\}$.
18. Find a basis for and the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$, where $A=\left[\begin{array}{rrr}3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7\end{array}\right]$. Working this out with Gauss-Jordan, $\left[\begin{array}{rrrr}3 & -6 & 21 & 0 \\ -2 & 4 & -14 & 0 \\ 1 & -2 & 7 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & -2 & 7 & 0 \\ -2 & 4 & -14 & 0 \\ 3 & -6 & 21 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & -2 & 7 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ Thus, the solutions are $\mathbf{x}=\left[\begin{array}{c}2 s-7 t \\ s \\ t\end{array}\right]=s\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-7 \\ 0 \\ 1\end{array}\right]$

Thus, $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-7 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for the solution space , and the dimension of the solution space is 2.
19. Determine if $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is in the column space of $A=\left[\begin{array}{rrr}1 & 3 & 2 \\ -1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right]$.

In other words, determine if $x\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right]+y\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]+z\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ has any solutions.
$\left[\begin{array}{rrrr}1 & 3 & 2 & 1 \\ -1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 3 & 2 & 1 \\ 0 & 4 & 4 & 2 \\ 0 & 1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 / 2 \\ 0 & 1 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 / 2 \\ 0 & 0 & 0 & -1 / 2\end{array}\right]$
As you can now see, there are no solutions to this system, so \mathbf{b} is not in the column space of A.

