## MATH 310, Section 4.6 Solutions

2. $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
(a) The rank of $A$ is 1
(b) A basis for the row space is $\{(1,2,3)\}$
(c) A basis for the column space is $\{[1]\}$
3. $A=\left[\begin{array}{rrrr}2 & 4 & -3 & -6 \\ 7 & 14 & -6 & -3 \\ -2 & -4 & 1 & -2 \\ 2 & 4 & -2 & -2\end{array}\right] \rightarrow\left[\begin{array}{rrrr}2 & 4 & -3 & -6 \\ 7 & 14 & -6 & -3 \\ -2 & -4 & 1 & -2 \\ 1 & 2 & -1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 2 & -1 & -1 \\ 7 & 14 & -6 & -3 \\ 2 & 4 & -3 & -6 \\ -2 & -4 & 1 & -2\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 2 & -1 & -1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & -1 & -4\end{array}\right]$
$\rightarrow\left[\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ From this, you can read off all the answers:
(a) The rank of $A$ is 2 .
(b) Basis for the row space is $\{(1,2,0,3),(0,0,1,4)\}$
(c) Basis for the column space is $\left\{\left[\begin{array}{r}2 \\ 7 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{r}-3 \\ -6 \\ 1 \\ -1\end{array}\right]\right\}$
4. Find a basis for the subspace of $\mathbb{R}^{4}$ spanned by $S=\{(2,5,-3,-2),(-2,-3,2,-5),(1,3,-2,2),(-1,-5,3,5)\}$. For this, we find a basis of the row space of $A=\left[\begin{array}{rrrr}2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -5 & 3 & 5\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ -2 & -3 & 2 & -5 \\ 2 & 5 & -3 & -2 \\ -1 & -5 & 3 & 5\end{array}\right]$ $\rightarrow\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ 0 & 3 & -2 & -1 \\ 0 & -1 & 1 & -6 \\ 0 & -2 & 1 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ 0 & 3 & -2 & -1 \\ 0 & 1 & -1 & 6 \\ 0 & -2 & 1 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 3 & -2 & 2 \\ 0 & 1 & -1 & 6 \\ 0 & 3 & -2 & -1 \\ 0 & -2 & 1 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & 1 & -16 \\ 0 & 1 & -1 & 6 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & -1 & 19\end{array}\right]$
$\rightarrow\left[\begin{array}{rrrr}1 & 0 & 1 & -16 \\ 0 & 1 & -1 & 6 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -13 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & 0 & 0\end{array}\right]$
From this, you can see that a basis for the row space (hence for the subspace spanned by the rows) is $S=\{(1,0,0,3),(0,1,0,-13),(0,0,1,-19)\}$.
5. Find a basis for and the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$, where $A=\left[\begin{array}{rrr}3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7\end{array}\right]$.

Working this out with Gauss-Jordan, $\left[\begin{array}{rrrr}3 & -6 & 21 & 0 \\ -2 & 4 & -14 & 0 \\ 1 & -2 & 7 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & -2 & 7 & 0 \\ -2 & 4 & -14 & 0 \\ 3 & -6 & 21 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & -2 & 7 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Thus, the solutions are $\mathbf{x}=\left[\begin{array}{c}2 s-7 t \\ s \\ t\end{array}\right]=s\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-7 \\ 0 \\ 1\end{array}\right]$
Thus, $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-7 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for the solution space , and the dimension of the solution space is 2.
19. Determine if $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is in the column space of $A=\left[\begin{array}{rrr}1 & 3 & 2 \\ -1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right]$.

The problem is asking if the vector $\mathbf{b}$ is a linear combination of the columns of $A$. In other words, it is asking if the following system has a solution:

$$
x\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]+z\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Solving this in the usual way gives:

$$
\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
-1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 3 & 2 & 1 \\
0 & 4 & 4 & 2 \\
0 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
0 & 1 & 1 & 1 / 2 \\
0 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 3 & 2 & 1 \\
0 & 1 & 1 & 1 / 2 \\
0 & 0 & 0 & -1 / 2
\end{array}\right]
$$

As you can now see, there are no solutions to this equation, so $\mathbf{b}$ is not in the column space of $A$.

## MATH 310, Section 4.7 Solutions

6. Suppose $B=\{(4,0,7,3),(0,5,-1,-1),(-3,4,2,1),(0,1,5,0)\}$ and $[\mathbf{x}]_{B}=[-2,3,4,1]^{T}$.

Since $[\mathbf{x}]_{B}=[-2,3,4,1]^{T}=\left[\begin{array}{r}-2 \\ 3 \\ 4 \\ 1\end{array}\right]$, it follows
$\mathrm{x}=-2(4,0,7,3)+3(0,5,-1,-1)+4(-3,4,2,1)+1(0,1,5,0)=(-20,32,-4,-5)$.
Given that the standard basis for $\mathbb{R}^{4}$ is $S=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$, we have
$[\mathbf{x}]_{S}=[-20,32,-4,-5]^{T}=\left[\begin{array}{r}-20 \\ 32 \\ -4 \\ -5\end{array}\right]$.
8. Find the coordinate of $\mathbf{x}=(-26,32)$ relative to the basis $B=\{(-6,7),(4,-3)\}$.

This involves finding a solution to $x(-6,7)+y(4,-3)=(-26,32)$, which gives rise to the system:
$\left\{\begin{array}{rlr}-6 x+4 y & =-26 \\ 7 x-3 y & =32\end{array}\right.$
$\left[\begin{array}{rrr}-6 & 4 & -26 \\ 7 & -3 & 32\end{array}\right] \rightarrow\left[\begin{array}{rrr}-6 & 4 & -26 \\ 1 & 1 & 6\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 & 6 \\ -6 & 4 & -26\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 & 6 \\ 0 & 10 & 10\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 6 \\ 0 & 1 & 1\end{array}\right] \rightarrow$ $\left[\begin{array}{lll}1 & 0 & 5 \\ 0 & 1 & 1\end{array}\right]$
Thus $5(-6,7)+1(4,-3)=(-26,32)$, so $[\mathbf{x}]_{B}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$.
14. Find the transition matrix from $B=\{(1,0),(0,1)\}$ to $B^{\prime}=\{(1,1),(5,6)\}$.

Setting up the problem as in Theorem 4.21, we get

$$
\left[\begin{array}{ll|ll}
1 & 5 & 1 & 0 \\
1 & 6 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|rr}
1 & 5 & 1 & 0 \\
0 & 1 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|rr}
1 & 0 & 6 & -5 \\
0 & 1 & -1 & 1
\end{array}\right], \text { so } \quad \text { the transition matrix is } P^{-1}=\left[\begin{array}{rr}
6 & -5 \\
-1 & 1
\end{array}\right]
$$

30. Find the coordinate matrix of $p=3 x^{2}+114 x+13$ relative to the standard basis $S=\left\{1, x, x^{2}\right\}$ of $P_{2}$. Since $p=13 \cdot 1+114 \cdot x+3 \cdot x^{2}$, it follows that $[p]_{S}=\left[\begin{array}{c}13 \\ 114 \\ 3\end{array}\right]$.
31. Suppose $P$ is the transition matrix from $B^{\prime \prime}$ to $B^{\prime}$ and $Q$ is the transition matrix from $B^{\prime}$ to $B$. What is the transition matrix from $B$ to $B^{\prime \prime}$ ?

Since $P$ is the transition matrix from $B^{\prime \prime}$ to $B^{\prime}$, we have $P[\mathbf{x}]_{B^{\prime \prime}}=[\mathbf{x}]_{B^{\prime}}$, so

$$
\begin{equation*}
[\mathbf{x}]_{B^{\prime \prime}}=P^{-1}[\mathbf{x}]_{B^{\prime}} . \tag{1}
\end{equation*}
$$

Since $Q$ is the transition matrix from $B^{\prime}$ to $B$, we have $Q[\mathbf{x}]_{B^{\prime}}=[\mathbf{x}]_{B}$, so

$$
\begin{equation*}
[\mathbf{x}]_{B^{\prime}}=Q^{-1}[\mathbf{x}]_{B} . \tag{2}
\end{equation*}
$$

Taking equation (1) and replacing the $[\mathbf{x}]_{B^{\prime}}$ with $Q^{-1}[\mathbf{x}]_{B}$ (By equation (2)) we get

$$
\begin{equation*}
[\mathbf{x}]_{B^{\prime \prime}}=P^{-1} Q^{-1}[\mathbf{x}]_{B} \tag{3}
\end{equation*}
$$

From this, $\left(P^{-1} Q^{-1}\right)[\mathbf{x}]_{B}=[\mathbf{x}]_{B^{\prime \prime}}$, which means $P^{-1} Q^{-1}=(Q P)^{-1}$ is the transition matrix from $B$ to $B^{\prime \prime}$.

