MATH 310, Section 4.6 Solutions

2. $A = [1 \ 2 \ 3]$

- (a) The rank of A is 1
- (b) A basis for the row space is $\{(1,2,3)\}$
- (c) A basis for the column space is $\{[1]\}$

$$8. \ A = \begin{bmatrix} 2 & 4 & -3 & -6 \\ 7 & 14 & -6 & -3 \\ -2 & -4 & 1 & -2 \\ 2 & 4 & -2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 4 & -3 & -6 \\ 7 & 14 & -6 & -3 \\ -2 & -4 & 1 & -2 \\ 1 & 2 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & -1 \\ 7 & 14 & -6 & -3 \\ 2 & 4 & -3 & -6 \\ -2 & -4 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & -1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & -1 & -4 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
From this, you can read off all the answers:

- (a) The rank of A is 2.
- (b) Basis for the row space is $\{(1,2,0,3),(0,0,1,4)\}$

(c) Basis for the column space is
$$\left\{ \begin{bmatrix} 2\\7\\-2\\2 \end{bmatrix}, \begin{bmatrix} -3\\-6\\1\\-1 \end{bmatrix} \right\}$$

12. Find a basis for the subspace of \mathbb{R}^4 spanned by $S = \{(2, 5, -3, -2), (-2, -3, 2, -5), (1, 3, -2, 2), (-1, -5, 3, 5)\}.$ For this, we find a basis of the row space of $A = \begin{bmatrix} 2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -5 & 3 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -2 & 2 \\ -2 & -3 & 2 & -5 \\ 2 & 5 & -3 & -2 \\ -1 & -5 & 3 & 5 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 3 & -2 & -1 \\ 0 & -1 & 1 & -6 \\ 0 & -2 & 1 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 3 & -2 & -1 \\ 0 & 1 & -1 & 6 \\ 0 & -2 & 1 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & -16 \\ 0 & 3 & -2 & -1 \\ 0 & -2 & 1 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & -16 \\ 0 & 1 & -1 & 6 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & -1 & 19 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & -16 \\ 0 & 1 & -1 & 6 \\ 0 & 1 & -1 & 6 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -13 \\ 0 & 0 & 1 & -19 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

From this, you can see that a basis for the row space (hence for the subspace spanned by the rows) is $S = \{(1, 0, 0, 3), (0, 1, 0, -13), (0, 0, 1, -19)\}$.

18. Find a basis for and the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$, where $A = \begin{bmatrix} 3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7 \end{bmatrix}$.

Working this out with Gauss-Jordan,
$$\begin{bmatrix} 3 & -6 & 21 & 0 \\ -2 & 4 & -14 & 0 \\ 1 & -2 & 7 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 7 & 0 \\ -2 & 4 & -14 & 0 \\ 3 & -6 & 21 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 7 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Thus, the solutions are $\mathbf{x} = \begin{bmatrix} 2s - 7t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -7 \\ 0 \\ 1 \end{bmatrix}$ Thus, $\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -7 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a basis for the solution space, and the dimension of the solution space is 2.

19. Determine if
$$\mathbf{b} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
 is in the column space of $A = \begin{bmatrix} 1 & 3 & 2\\-1 & 1 & 2\\0 & 1 & 1 \end{bmatrix}$.

The problem is asking if the vector **b** is a linear combination of the columns of A. In other words, it is asking if the following system has a solution: $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$x \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} + y \begin{bmatrix} 3\\ 1\\ 1 \end{bmatrix} + z \begin{bmatrix} 2\\ 2\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$$

Solving this in the usual way gives:

Γ	1	3	2	1		[1]	3	2	1]	[1	3	2	1		[1]	3	2	1]
	-1	1	2	1	\rightarrow	0	4	4	2	\rightarrow	0	1	1	1/2	\rightarrow	0	1	1	1/2
	0	1	1	0		0	1	1	0		0	1	1	0		0	0	0	$\begin{bmatrix} 1\\ 1/2\\ -1/2 \end{bmatrix}$

As you can now see, there are no solutions to this equation, so | **b** is **not** in the column space of A.

MATH 310, Section 4.7 Solutions

6. Suppose $B = \{(4, 0, 7, 3), (0, 5, -1, -1), (-3, 4, 2, 1), (0, 1, 5, 0)\}$ and $[\mathbf{x}]_B = [-2, 3, 4, 1]^T$. Since $[\mathbf{x}]_B = [-2, 3, 4, 1]^T = \begin{bmatrix} -2\\ 3\\ 4\\ 1 \end{bmatrix}$, it follows $\mathbf{x} = -2(4, 0, 7, 3) + 3(0, 5, -1, -1) + 4(-3, 4, 2, 1) + 1(0, 1, 5, 0) = (-20, 32, -4, -5).$ Given that the standard basis for \mathbb{R}^4 is $S = \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$, we have $\begin{bmatrix} [\mathbf{x}]_S = [-20, 32, -4, -5]^T = \begin{bmatrix} -20\\ 32\\ -4\\ -5 \end{bmatrix}.$ 8. Find the coordinate of $\mathbf{x} = (-26, 32)$ relative to the basis $B = \{(-6, 7), (4, -3)\}$. This involves finding a solution to x(-6, 7) + y(4, -3) = (-26, 32), which gives rise to the system: $\begin{cases} -6x + 4y = -26\\ 7x - 3y = 32 \end{cases}$ $\begin{bmatrix} -6 & 4 & -26\\ 7 & -3 & 32 \end{bmatrix} \rightarrow \begin{bmatrix} -6 & 4 & -26\\ 1 & 1 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 6\\ -6 & 4 & -26 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 6\\ 0 & 10 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 6\\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 5\\ 0 & 1 & 1 \end{bmatrix}$ Thus 5(-6, 7) + 1(4, -3) = (-26, 32), so $\mathbf{[x]}_B = \begin{bmatrix} 5\\ 1 \end{bmatrix}$.

14. Find the transition matrix from $B = \{(1,0), (0,1)\}$ to $B' = \{(1,1), (5,6)\}$. Setting up the problem as in Theorem 4.21, we get

$\begin{bmatrix} 1 & 0 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ so } \begin{bmatrix} \text{the transition matrix is } P^{-1} = \begin{bmatrix} 0 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -1 & 1 \end{bmatrix}$	$\left[\begin{array}{c}1\\1\end{array}\right]$	5 6	$\begin{vmatrix} 1\\0 \end{vmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	\rightarrow	$\left[\begin{array}{c} 1\\ 0 \end{array} \right]$	$\left. \begin{array}{c} 5 \\ 1 \end{array} \right $	$\begin{vmatrix} 1 \\ -1 \end{vmatrix}$	$\begin{array}{c} 0 \\ 1 \end{array}$	\rightarrow	$\left[\begin{array}{c} 1\\ 0\end{array}\right]$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{vmatrix} 6\\ -1 \end{vmatrix}$	-5 1], so	the transition matrix is $P^{-1} = \begin{bmatrix} 6 & -5 \\ -1 & 1 \end{bmatrix}$	
---	--	--------	--------------------------------------	--------------------------------------	---------------	---	--	---	---------------------------------------	---------------	--	---------------------------------------	--	---------	-------	--	--

30. Find the coordinate matrix of $p = 3x^2 + 114x + 13$ relative to the standard basis $S = \{1, x, x^2\}$ of P_2 .

Since $n = 13 \cdot 1 + 114 \cdot r + 3 \cdot r^2$ it follows that	$[n]_{\alpha}$ –	10 11/	
Since $p = 13 \cdot 1 + 114 \cdot x + 3 \cdot x^2$, it follows that	[p]S -	3	•

36. Suppose P is the transition matrix from B'' to B' and Q is the transition matrix from B' to B. What is the transition matrix from B to B''?

Since P is the transition matrix from B'' to B', we have $P[\mathbf{x}]_{B''} = [\mathbf{x}]_{B'}$, so

$$[\mathbf{x}]_{B''} = P^{-1}[\mathbf{x}]_{B'}.$$
 (1)

Since Q is the transition matrix from B' to B, we have $Q[\mathbf{x}]_{B'} = [\mathbf{x}]_B$, so

$$[\mathbf{x}]_{B'} = Q^{-1}[\mathbf{x}]_B. \tag{2}$$

Taking equation (1) and replacing the $[\mathbf{x}]_{B'}$ with $Q^{-1}[\mathbf{x}]_B$ (By equation (2)) we get

$$[\mathbf{x}]_{B''} = P^{-1}Q^{-1}[\mathbf{x}]_B.$$
(3)

From this, $(P^{-1}Q^{-1})[\mathbf{x}]_B = [\mathbf{x}]_{B''}$, which means $P^{-1}Q^{-1} = (QP)^{-1}$ is the transition matrix from B to B''.