MATH 310, Section 4.4 Solutions

16. Does the set $\{(1,0,3),(2,0,-1),(4,0,5),(2,0,6)\}$ span \mathbb{R}^{3} ?

NO. Notice that any linear combination of these four vectors will be a vector whose second component is 0 . Since \mathbb{R}^{3} has vectors whose second component is not 0 , then the given set cannot span \mathbb{R}^{3}.
26. Determine if the set $\{(1,0,0),(0,4,0),(0,0,-6),(1,5,-3)\}$ is linearly independent or dependent.

By inspection we can see $1(1,0,0)+\frac{5}{4}(0,4,0)+\frac{1}{2}(0,0,-6)-1(1,5,-3)=(0,0,0)$.
Thus the equation $c_{1}(1,0,0)+c_{2}(0,4,0)+c_{3}(0,4,0)-c_{4}(1,5,-3)=(0,0,0)$ has nontrivial solutions.
Thus the set $\{(1,0,0),(0,4,0),(0,0,-6),(1,5,-3)\}$ is LINEARLY DEPENDENT.
36. Decide if the matrices $\left[\begin{array}{rr}1 & -1 \\ 4 & 5\end{array}\right],\left[\begin{array}{rr}4 & 3 \\ -2 & 3\end{array}\right],\left[\begin{array}{rr}1 & -8 \\ 22 & 23\end{array}\right]$ are inearly independent or dependent.

We need to see whether the equation $c_{1}\left[\begin{array}{rr}1 & -1 \\ 4 & 5\end{array}\right]+c_{2}\left[\begin{array}{rr}4 & 3 \\ -2 & 3\end{array}\right]+c_{3}\left[\begin{array}{rr}1 & -8 \\ 22 & 23\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ has any nontrivial solutions.

This equation gives rise to the following system.

$$
\begin{aligned}
& \left\{\begin{array}{rll}
c_{1}+4 c_{2} & +c_{3} & =0 \\
-c_{1} & +3 c_{2} & -8 c_{3}
\end{array}=00 \times 1 \quad\left[\begin{array}{rrrr}
1 & 4 & 1 & 0 \\
4 c_{1} & -2 c_{2} & +22 c_{3} & =0 \\
5 c_{1} & +3 c_{2} & +23 c_{3} & =0
\end{array} \quad\left[\begin{array}{rrrr}
3 & -8 & 0 \\
4 & -2 & 22 & 0 \\
5 & +3 & 23 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 4 & 1 & 0 \\
0 & 7 & -7 & 0 \\
0 & -18 & -18 & 0 \\
0 & -17 & -18 & 0
\end{array}\right] \rightarrow\right.\right. \\
& {\left[\begin{array}{rrrr}
1 & 4 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -17 & -18 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 4 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 4 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

At this point you can see there's only the trivial solution $c_{1}=0, c_{2}=0, c_{3}=0$, so the three matrices are LINEARLY INDEPENDENT.
38. Determine if the set $S=\left\{x^{2}-2 x, x^{3}+8, x^{3}-x^{2}, x^{2}-4\right\}$ spans P_{3}.

Given an arbitrary polynomial $a x^{3}+b x^{2}+c x+d$, we want to know if we can always find values for $c_{1}, c_{2}, c_{3}, c_{4}$ satisfying $c_{1}\left(x^{2}-2 x\right)+c_{2}\left(x^{3}+8\right)+c_{3}\left(x^{3}-x^{2}\right)+c_{4}\left(x^{2}-4\right)=a x^{3}+b x^{2}+c x+d$.
Combining, we get $\left(c_{2}+c_{3}\right) x^{3}+\left(c_{1}-c_{3}+c_{4}\right) x^{2}-2 c_{1} x+\left(8 c_{2}-4 c_{4}\right)=a x^{3}+b x^{2}+c x+d$, which leads to the following system.

$$
\left\{\begin{array}{rlll}
c_{2} & +c_{3} & =a \\
c_{1} & & -c_{3} & +c_{4} \\
=b \\
-2 c_{1} & & & \\
& 8 c_{2} & & -4 c_{4}
\end{array}=d \quad\left[\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
1 & 0 & -1 & 1 \\
-2 & 0 & 0 & 0 \\
0 & 8 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\right.
$$

Notice this is of form $A \mathbf{x}=\mathbf{b}$. Expanding along row 3, we get $|A|=-2\left|\begin{array}{rrr}1 & 1 & 0 \\ 0 & -1 & 1 \\ 8 & 0 & -4\end{array}\right|=-24 \neq 0$. Hence the A is invertible, so the system $A \mathbf{x}=\mathbf{b}$ has a solution no matter what \mathbf{b} is. Thus, the conclusion is Yes, the set S spans P_{3}.
56. Suppose \mathbf{u}, \mathbf{v} and \mathbf{w} are three vectors in a vector space. Is the set $S=\{\mathbf{v}-\mathbf{u}, \mathbf{w}-\mathbf{v}, \mathbf{u}-\mathbf{w}\}$ linearly independent or dependent?
Notice that $1(\mathbf{v}-\mathbf{u})+1(\mathbf{w}-\mathbf{v})+1(\mathbf{u}-\mathbf{w})=\mathbf{0}$, so it follows the set S is linearly dependent.

