MATH 310, Section 4.4 Solutions

16. Does the set $\{(1,0,3), (2,0,-1), (4,0,5), (2,0,6)\}$ span \mathbb{R}^3 ?

NO. Notice that any linear combination of these four vectors will be a vector whose second component is 0. Since \mathbb{R}^3 has vectors whose second component is not 0, then the given set cannot span \mathbb{R}^3 .

26. Determine if the set $\{(1,0,0), (0,4,0), (0,0,-6), (1,5,-3)\}$ is linearly independent or dependent. By inspection we can see $1(1,0,0) + \frac{5}{4}(0,4,0) + \frac{1}{2}(0,0,-6) - 1(1,5,-3) = (0,0,0)$. Thus the equation $c_1(1,0,0) + c_2(0,4,0) + c_3(0,4,0) - c_4(1,5,-3) = (0,0,0)$ has nontrivial solutions. Thus the set $\{(1,0,0), (0,4,0), (0,0,-6), (1,5,-3)\}$ is LINEARLY DEPENDENT.

36. Decide if the matrices $\begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix}$, $\begin{bmatrix} 4 & 3 \\ -2 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & -8 \\ 22 & 23 \end{bmatrix}$ are inearly independent or dependent.

We need to see whether the equation $c_1 \begin{bmatrix} 1 & -1 \\ 4 & 5 \end{bmatrix} + c_2 \begin{bmatrix} 4 & 3 \\ -2 & 3 \end{bmatrix} + c_3 \begin{bmatrix} 1 & -8 \\ 22 & 23 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ has any nontrivial solutions.

This equation gives rise to the following system.

$c_1 \\ -c_1 \\ 4c_1 \\ 5c_1$	+4 +3 -2 +3	$\begin{array}{l} 4c_2 \\ 3c_2 \\ 2c_2 \\ -3c_2 \end{array}$	$+c_{3}$ $-8c_{3}$ $+22c_{3}$ $+23c_{3}$	= 0 = 0 = 0 = 0)))					$4 \\ -2 \\ +3$	$ \begin{array}{r} 1 \\ -8 \\ 22 \\ 23 \\ \end{array} $	0 0 0 0	$] \rightarrow$	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$4 \\ 7 \\ -18 \\ -17$	$ \begin{array}{r} 1 \\ -7 \\ -18 \\ -18 \end{array} $	0 0 0 0	\rightarrow
1 0 0 0 -	$4 \\ 1 \\ 1 \\ -17$	$ \begin{array}{c} 1 \\ -1 \\ 1 \\ -18 \end{array} $	$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	\rightarrow	1 0 0 0	4 1 0 0	$\begin{array}{c}1\\-1\\2\\-1\end{array}$	0 0 0 0	$] \rightarrow$	$\left[\begin{array}{c}1\\0\\0\\0\end{array}\right]$	4 1 0 0	$\begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$					

At this point you can see there's only the trivial solution $c_1 = 0$, $c_2 = 0$, $c_3 = 0$, so the three matrices are LINEARLY INDEPENDENT.

38. Determine if the set $S = \{x^2 - 2x, x^3 + 8, x^3 - x^2, x^2 - 4\}$ spans P_3 .

Given an arbitrary polynomial $ax^3 + bx^2 + cx + d$, we want to know if we can always find values for c_1, c_2, c_3, c_4 satisfying $c_1(x^2 - 2x) + c_2(x^3 + 8) + c_3(x^3 - x^2) + c_4(x^2 - 4) = ax^3 + bx^2 + cx + d$. Combining, we get $(c_2 + c_3)x^3 + (c_1 - c_3 + c_4)x^2 - 2c_1x + (8c_2 - 4c_4) = ax^3 + bx^2 + cx + d$, which leads to the following system.

ſ		c_2	$+c_3$		= a		0	1	1	0		c_1		a	
J	c_1		$-c_3$	$+c_{4}$	= b		1	0	-1	1		c_2		b	
١	$-2c_1$				= c		-2	0	0	0		c_3	=	c	
l		$8c_2$		$-4c_{4}$	= d		0	8	0	-4		c_4		$\lfloor d \rfloor$	
													1	1	0
N	lotice th	is is	of form	$n A \mathbf{x} =$	= b F	xpanding alo	ng ro	w 3	we	ret A	=	= -2	0	_1	1

Notice this is of form $A\mathbf{x} = \mathbf{b}$. Expanding along row 3, we get $|A| = -2 \begin{vmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 8 & 0 & -4 \end{vmatrix} = -24 \neq 0$.

Hence the A is invertible, so the system $A\mathbf{x} = \mathbf{b}$ has a solution no matter what \mathbf{b} is. Thus, the conclusion is Yes, the set S spans P_3 .

56. Suppose \mathbf{u} , \mathbf{v} and \mathbf{w} are three vectors in a vector space. Is the set $S = {\mathbf{v} - \mathbf{u}, \mathbf{w} - \mathbf{v}, \mathbf{u} - \mathbf{w}}$ linearly independent or dependent?

Notice that $1(\mathbf{v} - \mathbf{u}) + 1(\mathbf{w} - \mathbf{v}) + 1(\mathbf{u} - \mathbf{w}) = \mathbf{0}$, so it follows the set S is linearly dependent.