MATH 310, Section 4.3 Solutions

4. Show the set W of all 3×2 matrices of form $\left[\begin{array}{cc}a & b \\ a+b & 0 \\ 0 & c\end{array}\right]$ is a subspace of $V=M_{3,2}$.
5. Suppose A and B are in W. This means $A=\left[\begin{array}{cc}x & y \\ x+y & 0 \\ 0 & z\end{array}\right]$ and $B=\left[\begin{array}{cc}x^{\prime} & y^{\prime} \\ x^{\prime}+y^{\prime} & 0 \\ 0 & z^{\prime}\end{array}\right]$ for some real numbers $x, y, z, x^{\prime}, y^{\prime}, z^{\prime}$. Then $A+B=\left[\begin{array}{cc}x+x^{\prime} & y+y^{\prime} \\ (x+x)^{\prime}+\left(y+y^{\prime}\right) & 0 \\ 0 & z+z^{\prime}\end{array}\right]$ has the form of a matrix in W, so $A+B$ is in W.
6. Suppose $A=\left[\begin{array}{cc}x & y \\ x+y & 0 \\ 0 & z\end{array}\right]$ is in W and c is a real number. Then $c A=\left[\begin{array}{cc}c x & c y \\ c x+c y & 0 \\ 0 & c z\end{array}\right]$ has the form of a matrix in W, so $c A$ is in W.

It follows from Theorem 4.5 that W is a subspace of $M_{3,2}$.
6. Show the set W of differentiable functions on $[0,1]$ is a subspace of all continuous functions on $[0,1]$.

From Calculus, we know that every differentiable function is also continuous, so W really is a subset of all continuous functions on $[0,1]$. We also know that (1) the sum of two differentiable functions is differentiable, and (2) a scalar multiple of a differentiable function is differentiable. Thus W is closed under addition and scalar multiplication, so W is a subspace by Theorem 4.5.
12. W is the set of all matrices $M_{n, n}$ such that $A^{2}=A$.

Notice that I is in W because $I^{2}=I$. But $2 I$ is not in W because $(2 I)^{2}=4 I \neq 2 I$. Thus W is not closed under scalar multiplication, so it is not a subspace.
16. Show $W=\left\{\left(x_{1}, x_{2}, 4\right): x_{1}, x_{2}\right.$ are real numbers $\}$ is NOT a subspace of \mathbb{R}^{3}.

Notice that vectors $\mathbf{u}=(0,0,4)$ in W, but $2 \mathbf{u}=(0,0,8)$ is not in W. Since W is not closed under scalar multiplication, W is not a subspace of \mathbb{R}^{3}.
26. Suppose A is a fixed $m \times n$ matrix. Prove that the set $W=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}$ is a subspace of \mathbb{R}^{n}. Proof.

1. Suppose \mathbf{u} and \mathbf{v} are in W. This means $A \mathbf{u}=\mathbf{0}$ and $A \mathbf{v}=\mathbf{0}$. Observe that by properties of matrix multiplication, $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}=\mathbf{0}+\mathbf{0}=\mathbf{0}$. But $A(\mathbf{u}+\mathbf{v})=\mathbf{0}$ means $\mathbf{u}+\mathbf{v}$ is in W.
2. Suppose \mathbf{u} is in W and c is a scalar. The fact that \mathbf{u} is in W means $A \mathbf{u}=\mathbf{0}$. Then $A(c \mathbf{u})=$ $c A \mathbf{u}=c \mathbf{0}=\mathbf{0}$. But $A(c \mathbf{u})=\mathbf{0}$ means $c \mathbf{u}$ is in W.

It follows from Theorem 4.5 that W is a subspace of \mathbb{R}^{n}.

