8.

20. $\mathbf{u}=(0,4,3,4,4)$ and $\mathbf{v}=(6,8,-3,3-5)$
(a) $\mathbf{u}-\mathbf{v}=(-6,-4,6,1,9)$
(b) $2(\mathbf{u}+3 \mathbf{v})=2 \mathbf{u}+6 \mathbf{v}=(0,8,6,8,8)+(36,48,-18,18-15)=(36,56,-12,26,-22)$
26. $\mathbf{w}+\mathbf{u}=-\mathbf{v}$
$\mathbf{w}=-\mathbf{u}-\mathbf{v}=-(1,-1,0,1)-(0,2,3,-1)=(-1,-1,-3,0)$
36. Suppose $\mathbf{u}_{1}=(1,3,5), \mathbf{u}_{2}=(2,-1,3)$, $\mathbf{u}_{3}=(-3,2,-4)$ and $\mathbf{v}=(-1,7,2)$.

Is \mathbf{v} a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} ?
In other words are there scalars x, y and z with $x \mathbf{u}_{1}+y \mathbf{u}_{2}+z \mathbf{u}_{3}=\mathbf{v}$?
This is $x(1,3,5)+y(2,-1,3)+z(-3,2,-4)=(-1,7,2)$ or
$(x+2 y-3 z, \quad 3 x-y+2 z, \quad 5 x+3 y-4 z)=(-1,7,2)$, which is the system

$$
\left\{\begin{aligned}
x+2 y-3 z & =-1 \\
3 x-y+2 z & =7 \\
5 x+3 y-4 z & =2
\end{aligned}\right.
$$

$$
\left[\begin{array}{rrrr}
1 & 2 & -3 & -1 \\
3 & -1 & 2 & 7 \\
5 & 3 & -4 & 2
\end{array}\right] \begin{aligned}
& R 2-3 R_{1} \rightarrow R_{2} \\
& R 3-5 R_{1} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{rrrr}
1 & 2 & -3 & -1 \\
0 & -7 & 11 & 10 \\
0 & -7 & 11 & 7
\end{array}\right] R_{3}-R_{2} \rightarrow R_{3}\left[\begin{array}{rrrr}
1 & 2 & -3 & -1 \\
0 & -7 & 11 & 10 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

The last row shows there are no solutions. Thus \mathbf{v} is NOT a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3}.
50. Property $3: 0 \mathbf{v}=\mathbf{0}$.

Proof. First note that $0 \mathbf{v}=0 \mathbf{v}$. From this it follows that

$$
\begin{aligned}
0 \mathbf{v} & =(0+0) \mathbf{v} & & \text { a. } \underline{\text { because } 0+0=0} \\
0 \mathbf{v} & =0 \mathbf{v}+0 \mathbf{v} & & \text { b. } \underline{\text { distributive property } 8} \\
0 \mathbf{v}+(-0 \mathbf{v}) & =(0 \mathbf{v}+0 \mathbf{v})+(-0 \mathbf{v}) & & \text { c. } \underline{\text { add equal quantities to both sides }} \\
\mathbf{0} & =0 \mathbf{v}+(0 \mathbf{v}+(-0 \mathbf{v})) & & \text { d. } \underline{\text { properties } 5 \text { and } 3} \\
\mathbf{0} & =0 \mathbf{v}+\mathbf{0} & & \text { e. } \underline{\text { property } 5} \\
\mathbf{0} & =0 \mathbf{v} & & \text { f. } \underline{\text { property } 4}
\end{aligned}
$$

MATH 310, Section 4.2 Solutions

18. Consider the set $V=\{(x, y): x \geq 0, y$ is a real number $\}$.

In words, V is the right-hand half (1st and 3rd quadrants) of \mathbb{R}^{2}.
This is NOT a vector space because:
Axiom 5 fails: If \mathbf{u} is in V, then $-\mathbf{u}$ will lie outside of V.
Axiom 6 fails: If \mathbf{u} is in V, then $c \mathbf{u}$ may lie outside of V if $c \leq 0$.
20. Consider the set V of all 2×2 matrices of form $\left[\begin{array}{ll}a & b \\ c & 1\end{array}\right]$ (with standard operations).

This is NOT a vector space because:
Axiom 1 fails: Given two vectors $\left[\begin{array}{ll}a & b \\ c & 1\end{array}\right]$ and $\left[\begin{array}{ll}d & e \\ f & 1\end{array}\right]$ in V their sum $\left[\begin{array}{cc}a+d & b+e \\ c+f & 2\end{array}\right]$ is not in V.
Axiom 4 fails: The zero vector $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is not in V.
Axiom 5 fails: If $\left[\begin{array}{ll}a & b \\ c & 1\end{array}\right]$ is in V, then $-\left[\begin{array}{ll}a & b \\ c & 1\end{array}\right]=\left[\begin{array}{cc}-a & -b \\ -c & -1\end{array}\right]$ is not in V.
Axiom 6 fails: If $\left[\begin{array}{cc}a & b \\ c & 1\end{array}\right]$ is in V, then $d\left[\begin{array}{ll}a & b \\ c & 1\end{array}\right]=\left[\begin{array}{cc}d a & d b \\ d c & d\end{array}\right]$ is not in V when $d \neq 1$.
22. Consider the set V of all 2×2 nonsingular matrices (with standard operations).

This is NOT a vector space because:
Axiom 1 fails: Given vectors $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ in V, their $\operatorname{sum}\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is not in V.
Axiom 4 fails: The zero vector $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is not in V.
Axiom 6 fails: The scalar multiple $k\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is not in V if $k=0$.
30. Let V be the set of all positive real numbers.

Suppose V has the following operations:
Addition: $x+y=x y$
Scalar multiplication: $c x=x^{c}$
Is V a vector space?

Observe that all the vector space axioms hold:

1. If $x, y \in V$ then x and y are positive, so $x y$ is positive, so $x+y=x y \in V$.
2. $x+y=x y=y x=y+x$
3. $(x+y)+z=(x y)+z=(x y) z=x(y z)=x+(y z)=x+(y+z)$
4. Notice that $1 \in V$ and the zero vector is $\mathbf{0}=1$ because $x+\mathbf{0}=x+1=x \cdot 1=x$ for all x in V.
5. If $x \in V$, then $-x=\frac{1}{x}$ because $x+(-x)=x(-x)=x \frac{1}{x}=1=\mathbf{0}$
6. If $x \in V$, and $c \in \mathbb{R}$, then $c x=x^{c}$ is positive because x is positive, so $c x \in V$.
7. $c(x+y)=(x+y)^{c}=(x y)^{c}=x^{c} y^{c}=x^{c}+y^{c}=c x+c y$
8. $(c+d) x=x^{c+d}=x^{c} x^{d}=x^{c}+x^{d}=c x+d y$
9. Note $c(d x)=c\left(x^{d}\right)=\left(x^{d}\right)^{c}=x^{c d}=(c d) x$
10. For every $x \in V$, we have $1 x=x^{1}=x$.

All axioms hold. Thus, the answer is YES, V is a vector space.
34. Property 1: $0 \mathbf{v}=\mathbf{0}$.

Proof. First note that $0 \mathbf{v}=0 \mathbf{v}$. From this it follows that

$$
\begin{aligned}
0 \mathbf{v} & =(0+0) \mathbf{v} & & \text { (because } 0+0=0) \\
0 \mathbf{v} & =0 \mathbf{v}+0 \mathbf{v} & & \text { (distributive property } 8) \\
0 \mathbf{v}+(-0 \mathbf{v}) & =(0 \mathbf{v}+0 \mathbf{v})+(-0 \mathbf{v}) & & \text { (add equal quantities to both sides) } \\
\mathbf{0} & =0 \mathbf{v}+(0 \mathbf{v}+(-0 \mathbf{v})) & & \text { (properties } 5 \text { and 3) } \\
\mathbf{0} & =0 \mathbf{v}+\mathbf{0} & & \text { (property 5) } \\
\mathbf{0} & =0 \mathbf{v} & & \text { (property 4) }
\end{aligned}
$$

This proves that $0 \mathbf{v}=\mathbf{0}$ in any vector space.

