MATH 310, Section 3.3 Solutions

20. Suppose A and B are 3×3 matrices with $|A|=10$ and $|B|=12$.
(a) $|A B|=|A||B|=(10)(12)=120$
(b) $\left|A^{4}\right|=|A A A A|=|A||A||A||A|=(10)^{4}=10000$
(c) $|2 A|=2^{3}|A|=8(12)=96$ (Remember: A has 3 rows.)
(d) $\left|(A B)^{T}\right|=|A B|=|A||B|=(10)(12)=120$
(e) $\left|A^{-1}\right|=\frac{1}{|A|}=\frac{1}{10}$
21. $A=\left[\begin{array}{rrr}2 & -1 / 2 & 8 \\ 1 & -1 / 4 & 4 \\ -5 / 2 & 3 / 2 & 8\end{array}\right]$. Notice that the first row is twice the second row, so the determinant is zero. Hence the matrix is NOT INVERTIBLE.
22. Consider the system $\left\{\begin{array}{r}x_{1}+x_{2}-x_{3}=4 \\ 2 x_{1}-x_{2}+x_{3}=6 \\ 3 x_{1}-2 x_{2}+2 x_{3}=0\end{array}\right.$ which is $\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & -1 & 1 \\ 3 & -2 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}6 \\ 6 \\ 0\end{array}\right]$.

Since the third column of the coefficient matrix is the negative of the second column, we can tell the determinant of the coefficient matrix is zero. Then, by condition 2 of the Equivalent Conditions For a Nonsingular Matrix (page 144), the system does not have a unique solution.
36. Find the values of k for which $\left[\begin{array}{cc}k-1 & 2 \\ 2 & k+2\end{array}\right]$ is singular.

The determinant is $(k-1)(k+2)-4=k^{2}+k-2-4=k^{2}+k-6=(k+3)(k-2)$.
This is zero when $k=-3$ or $k=2$.
Thus the answer is that the matrix is singular if $k=-3$ or $k=2$.
54. Suppose A and B are 3×3 matrices with $|A|=4$ and $|B|=5$.
(a) $|A B|=|A||B|=(4)(5)=20$
(b) $|2 A|=2^{3}|A|=32$
(c) A and B are both non-singular because their determinants are non-zero.
(d) $\left|A^{-1}\right|=\frac{1}{|A|}=\frac{1}{4}$
$\left|B^{-1}\right|=\frac{1}{|B|}=\frac{1}{5}$
(e) $\left|(A B)^{T}\right|=|A B|=|A||B|=(4)(5)=20$

