MATH 310, Section 3.1 Solutions

20. Expanding along the third row, $\left|\begin{array}{rrr}2 & -1 & 3 \\ 1 & 4 & 4 \\ 1 & 0 & 2\end{array}\right|=\left|\begin{array}{rr}-1 & 3 \\ 4 & 4\end{array}\right|-0\left|\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right|+2\left|\begin{array}{rr}2 & -1 \\ 1 & 4\end{array}\right|=\mathbf{2}$
21. Expanding along the third row (which is all 0 's) you can see that the answer is $\mathbf{0}$.
22. The first row has the most 0's, so let's expand along it.

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
3 & 0 & 7 & 0 \\
2 & 6 & 11 & 12 \\
4 & 1 & -1 & 2 \\
1 & 5 & 2 & 10
\end{array}\right|=3\left|\begin{array}{rrr}
6 & 11 & 12 \\
1 & -1 & 2 \\
5 & 2 & 10
\end{array}\right|+7\left|\begin{array}{rrr}
2 & 6 & 12 \\
4 & 1 & 2 \\
1 & 5 & 10
\end{array}\right|= \\
& 3\left(-\left|\begin{array}{rr}
11 & 12 \\
2 & 10
\end{array}\right|-\left|\begin{array}{rr}
6 & 12 \\
5 & 10
\end{array}\right|-2\left|\begin{array}{rr}
6 & 11 \\
5 & 2
\end{array}\right|\right)+7\left(-4\left|\begin{array}{ll}
6 & 12 \\
5 & 10
\end{array}\right|+\left|\begin{array}{ll}
2 & 12 \\
1 & 10
\end{array}\right|-2\left|\begin{array}{ll}
2 & 6 \\
1 & 5
\end{array}\right|\right)= \\
& 3(-(110-24)-(60-60)-2(12-55))+7(-4(60-60)+(20-12)-2(10-6))= \\
& 3(-86+86)+7(8-8))=\mathbf{0}
\end{aligned}
$$

42. Because this matrix is triangular, its determinant will be the product of its diagonal entries, that is $4 \cdot \frac{1}{2} \cdot 3 \cdot(-2)=\mathbf{- 1 2}$
43. Because this matrix is triangular, its determinant will be the product of its diagonal entries, that is $7 \cdot \frac{1}{4} \cdot 2 \cdot(-1) \cdot(-2)=7$

Section 3.2 Solutions

30. Let's start by knocking out those 2 's in the 5 th column to create a column with a lot of zeros, and then expand along that last column. (Thus, start with $R_{3}-2 R_{1} \rightarrow R_{3}$ and $R_{5}-2 R_{1} \rightarrow R_{5}$.)

$$
\left|\begin{array}{rrrrl}
3 & -2 & 4 & 3 & 1 \\
-1 & 0 & 2 & 1 & 0 \\
5 & -1 & 0 & 3 & 2 \\
4 & 7 & -8 & 0 & 0 \\
1 & 2 & 3 & 0 & 2
\end{array}\right| \xlongequal{ }\left|\begin{array}{rrrrr}
3 & -2 & 4 & 3 & 1 \\
-1 & 0 & 2 & 1 & 0 \\
-1 & 3 & -8 & -3 & 0 \\
4 & 7 & -8 & 0 & 0 \\
-5 & 6 & -5 & -6 & 0
\end{array}\right| \xlongequal{ }\left|\begin{array}{rrrr}
-1 & 0 & 2 & 1 \\
-1 & 3 & -8 & -3 \\
4 & 7 & -8 & 0 \\
-5 & 6 & -5 & -6
\end{array}\right|
$$

Now add appropriate multiples of the first row to the lower rows to get zeros in the first column, and then expand along that column.

$$
\begin{aligned}
& \left.=\left|\begin{array}{rrrr}
-1 & 0 & 2 & 1 \\
0 & 3 & -10 & -4 \\
0 & 7 & 0 & 4 \\
0 & 6 & -15 & -11
\end{array}\right|=-\left|\begin{array}{rrr}
3 & -10 & -4 \\
7 & 0 & 4 \\
6 & -15 & -11
\end{array}\right|=-\left(\left.-7\left|\begin{array}{cc}
-10 & -4 \\
-15 & -11
\end{array}\right|-4 \right\rvert\, \begin{array}{ll}
3 & -10 \\
6 & -15
\end{array}\right]\right) \\
& -(-7(110-60)-4(-45+60))=\mathbf{4 1 0}
\end{aligned}
$$

