LINEAR ALGEBRA

Section 2.2 (Let me know if you see any typos and I'll correct them. -RH)
12. $C(B C)=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\left(\left[\begin{array}{rr}1 & 3 \\ -1 & 2\end{array}\right]\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\right)=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{rr}-3 & 1 \\ -2 & -1\end{array}\right]=\left[\begin{array}{rr}-2 & -1 \\ 3 & -1\end{array}\right]$
20. $A^{4}=\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Section 2.3 Solutions

10. $\left[\begin{array}{rrr|rrr}1 & 2 & 2 & 1 & 0 & 0 \\ 3 & 7 & 9 & 0 & 1 & 0 \\ -1 & -4 & -7 & 0 & 0 & 1\end{array}\right] \begin{gathered}R_{2}-3 R_{1} \rightarrow R_{2} \\ R_{3}+R_{1} \rightarrow R_{3}\end{gathered}\left[\begin{array}{rrr|rrr}1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -3 & 1 & 0 \\ 0 & -2 & -5 & 1 & 0 & 1\end{array}\right] \begin{gathered}R_{1}-2 R_{2} \rightarrow R_{1} \\ R_{3}+R_{2} \rightarrow R_{3}\end{gathered}$
$\left[\begin{array}{rrr|rrr}1 & 0 & -4 & 7 & -2 & 0 \\ 0 & 1 & 3 & -3 & 1 & 0 \\ 0 & 0 & 1 & -5 & 2 & 1\end{array}\right] \begin{aligned} & R_{1}+4 R_{3} \rightarrow R_{1} \\ & R_{2}-3 R_{3} \rightarrow R_{2}\end{aligned}\left[\begin{array}{lll|rrr}1 & 0 & 0 & -13 & 6 & 4 \\ 0 & 1 & 0 & 12 & -5 & -3 \\ 0 & 0 & 1 & -5 & 2 & 1\end{array}\right]$
Therefore $A^{-1}=\left[\begin{array}{rrr}-13 & 6 & 4 \\ 12 & -5 & -3 \\ -5 & 2 & 1\end{array}\right]$
11. $\left[\begin{array}{rrr|rrr}3 & 2 & 5 & 1 & 0 & 0 \\ 2 & 2 & 4 & 0 & 1 & 0 \\ -4 & 4 & 0 & 0 & 0 & 1\end{array}\right] \quad R_{1}-R_{2} \rightarrow R_{1}\left[\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & -1 & 0 \\ 2 & 2 & 4 & 0 & 1 & 0 \\ -4 & 4 & 0 & 0 & 0 & 1\end{array}\right] \begin{aligned} & R_{2}-2 R_{1} \rightarrow R_{2} \\ & R_{3}+4 R_{1} \rightarrow R_{3}\end{aligned}$
$\left[\begin{array}{lll|rrr}1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 2 & 2 & -2 & 3 & 0 \\ 0 & 4 & 4 & 4 & -4 & 1\end{array}\right] \quad R_{3}-2 R_{2} \rightarrow R_{3}\left[\begin{array}{lll|rrr}1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 2 & 2 & -2 & 3 & 0 \\ 0 & 0 & 0 & 8 & -10 & 1\end{array}\right] \begin{aligned} & \frac{1}{2} R_{2} \rightarrow R_{2} \\ & \frac{1}{8} R_{3} \rightarrow R_{3}\end{aligned}$
$\left[\begin{array}{lll|rrr}1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & 1 & -\frac{5}{4} & \frac{1}{8}\end{array}\right] \begin{aligned} & R_{2}+R_{3} \rightarrow R_{2} \\ & R_{1}-R_{3} \rightarrow R_{1}\end{aligned}\left[\begin{array}{lll|lrr}1 & 0 & 1 & 0 & \frac{1}{4} & -\frac{1}{8} \\ 0 & 1 & 1 & 0 & \frac{1}{4} & -\frac{1}{8} \\ 0 & 0 & 0 & 1 & -\frac{5}{4} & \frac{1}{8}\end{array}\right]$
This is reduced row-echelon form. Since the identity matrix does not appear on the left, the matrix in this problem is not invertible.
12. (a) $(A B)^{-1}=B^{-1} A^{-1}=\left[\begin{array}{rr}5 / 11 & 2 / 11 \\ 3 / 11 & -1 / 11\end{array}\right]\left[\begin{array}{rr}-2 / 7 & 1 / 7 \\ 3 / 7 & 2 / 7\end{array}\right]=\left[\begin{array}{ll}-4 / 77 & 9 / 77 \\ -9 / 77 & 1 / 77\end{array}\right]$
(b) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}=\left[\begin{array}{rr}-2 / 7 & 1 / 7 \\ 3 / 7 & 2 / 7\end{array}\right]^{T}=\left[\begin{array}{rr}-2 / 7 & 3 / 7 \\ 1 / 7 & 2 / 7\end{array}\right]$
(c) $A^{-2}=\left(A^{-1}\right)^{2}=\left[\begin{array}{rr}-2 / 7 & 1 / 7 \\ 3 / 7 & 2 / 7\end{array}\right]\left[\begin{array}{rr}-2 / 7 & 1 / 7 \\ 3 / 7 & 2 / 7\end{array}\right]=\left[\begin{array}{rr}1 / 7 & 0 \\ 0 & 1 / 7\end{array}\right]$
(d) $(2 A)^{-1}=\frac{1}{2} A^{-1}=\frac{1}{2}\left[\begin{array}{rr}-2 / 7 & 1 / 7 \\ 3 / 7 & 2 / 7\end{array}\right]=\left[\begin{array}{rr}-2 / 14 & 1 / 14 \\ 3 / 14 & 2 / 14\end{array}\right]=\left[\begin{array}{rr}-1 / 7 & 1 / 14 \\ 3 / 14 & 1 / 7\end{array}\right]$
