SECTION 2.1 (Let me know if you see any typos and I'll correct them. -RH)
4. (a) $A+B=\left[\begin{array}{rrr}4 & -2 & 5 \\ -4 & 0 & 2\end{array}\right]$
(b) $A-B=\left[\begin{array}{rrr}0 & 4 & -3 \\ 2 & -2 & 6\end{array}\right]$
(c) $2 A=\left[\begin{array}{rrr}4 & 2 & 2 \\ -2 & -2 & 8\end{array}\right]$
(d) $2 A-B=\left[\begin{array}{rrr}2 & 5 & -2 \\ 1 & -3 & 10\end{array}\right]$
12. (a) $A B=[12]$
(b) $B A=\left[\begin{array}{lll}6 & 4 & 2 \\ 9 & 6 & 3 \\ 0 & 0 & 0\end{array}\right]$
18. (a) $A B$ (Can't do-matrices don't match)
(b) $B A=\left[\begin{array}{rrrrr}37 & 78 & 51 & -104 & 124 \\ 16 & 26 & 28 & -42 & 56\end{array}\right]$
22. The system becomes $\left[\begin{array}{rr}2 & 2 \\ -6 & -6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{r}7 \\ -21\end{array}\right]$

To find x_{1} and x_{2}, we solve the system in the usual way. $\left[\begin{array}{rrr}2 & 2 & 7 \\ -6 & -6 & -21\end{array}\right] R_{2}+3 R_{1} \rightarrow R_{2}$
$\left[\begin{array}{lll}2 & 2 & 7 \\ 0 & 0 & 0\end{array}\right] 1 / 2 R_{1} \rightarrow R_{1}\left[\begin{array}{rrr}1 & 1 & 7 / 2 \\ 0 & 0 & 0\end{array}\right]$ Solution: $x_{1}=7 / 2-t, x_{2}=t$, where t is any real number.
30. Solve the matrix equation for a, b, c and d.
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right]=\left[\begin{array}{rr}3 & 17 \\ 4 & -1\end{array}\right]$
First, multiply and get $\left[\begin{array}{ll}2 a+3 b & a+b \\ 2 c+3 d & c+d\end{array}\right]=\left[\begin{array}{cc}3 & 17 \\ 4 & -1\end{array}\right]$
The fact that the corresponding entries are equal gives the following system in variables a, b, c and d.

$$
\left\{\begin{aligned}
2 a+3 b & =3 \\
a+b & =17 \\
2 c+3 d & =4 \\
c+d & =-1
\end{aligned}\right.
$$

Solving this in the usual way,

$$
\left.\begin{array}{ll}
{\left[\begin{array}{rrrrr}
2 & 3 & 0 & 0 & 3 \\
1 & 1 & 0 & 0 & 17 \\
0 & 0 & 2 & 3 & 4 \\
0 & 0 & 1 & 1 & -1
\end{array}\right]} & \begin{array}{rrrrr}
R_{1} \leftrightarrow R_{2} \\
R_{3} \leftrightarrow R_{4}
\end{array} \\
{\left[\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 17 \\
0 & 1 & 0 & 0 & -31 \\
0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1 & 6
\end{array}\right]} & \left.\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 17 \\
2 & 3 & 0 & 0 & 3 \\
0 & 0 & 1 & 1 & -1 \\
0 & 0 & 2 & 3 & 4
\end{array}\right]
\end{array} \begin{array}{l}
\\
R_{2}-2 R_{1} \rightarrow R_{2} \\
R_{4}-2 R_{3} \rightarrow R_{4} \rightarrow R_{1} \\
R_{3}-R_{4} \rightarrow R_{3}
\end{array} \begin{array}{rrrrr}
1 & 0 & 0 & 0 & 48 \\
0 & 1 & 0 & 0 & -31 \\
0 & 0 & 1 & 0 & -7 \\
0 & 0 & 0 & 1 & 6
\end{array}\right] \quad \$
$$

The solutions are $a=48, b=-31, c=-7, d=6$, so the matrix we seek is $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{rr}48 & -31 \\ -7 & 6\end{array}\right]$.

