4. (a)
$$A + B = \begin{bmatrix} 4 & -2 & 5 \\ -4 & 0 & 2 \end{bmatrix}$$

(b) $A - B = \begin{bmatrix} 0 & 4 & -3 \\ 2 & -2 & 6 \end{bmatrix}$
(c) $2A = \begin{bmatrix} 4 & 2 & 2 \\ -2 & -2 & 8 \end{bmatrix}$
(d) $2A - B = \begin{bmatrix} 2 & 5 & -2 \\ 1 & -3 & 10 \end{bmatrix}$
12. (a) $AB = \begin{bmatrix} 12 \\ 6 & 4 & 2 \\ 3 & 0 & 0 \end{bmatrix}$
13. (a) $AB = \begin{bmatrix} 12 \\ 6 & 4 & 2 \\ 3 & 0 & 0 \end{bmatrix}$
14. (a) $AB = \begin{bmatrix} 12 \\ 6 & 4 & 2 \\ 3 & 0 & 0 \end{bmatrix}$
15. (a) $AB = \begin{bmatrix} 12 \\ 6 & 4 & 2 \\ 16 & 26 & 28 & -42 \end{bmatrix}$
16. (b) $BA = \begin{bmatrix} 37 & 78 & 51 & -104 & 124 \\ 16 & 26 & 28 & -42 & 56 \end{bmatrix}$
22. The system becomes $\begin{bmatrix} 2 & 2 \\ -6 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -7 \\ -21 \end{bmatrix}$
To find x_1 and x_2 , we solve the system in the usual way. $\begin{bmatrix} 2 & 2 & 7 \\ -6 & -6 & -21 \end{bmatrix} R_2 + 3R_1 \rightarrow R_2$
 $\begin{bmatrix} 2 & 2 & 7 \\ 0 & 0 & 0 \end{bmatrix} 1/2R_1 \rightarrow R_1 \begin{bmatrix} 1 & 1 & 7/2 \\ 0 & 0 & 7 \end{bmatrix} \boxed{\text{Solution: } x_1 = 7/2 - t, x_2 = t, \text{ where } t \text{ is any real number.}}$
30. Solve the matrix equation for a, b, c and d .
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 17 \\ 4 & -1 \end{bmatrix}$
First, multiply and get $\begin{bmatrix} 2a + 3b & a + b \\ 2c + 3d & c + d \end{bmatrix} = \begin{bmatrix} 3 & 17 \\ 4 & -1 \end{bmatrix}$
The fact that the corresponding entries are equal gives the following system in variables a, b, c and d .

$$\begin{cases}
2a + 3b = 3 \\
a + b = 17 \\
2c + 3d = 4 \\
c + d = -1
\end{cases}$$

Solving this in the usual way,

 $\begin{bmatrix} 2 & 3 & 0 & 0 & 3 \\ 1 & 1 & 0 & 0 & 17 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 1 & 1 & -1 \end{bmatrix} \qquad \begin{array}{c} R_1 \leftrightarrow R_2 \\ R_3 \leftrightarrow R_4 \\ \begin{bmatrix} 1 & 1 & 0 & 0 & 17 \\ 2 & 3 & 0 & 0 & 3 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 2 & 3 & 4 \end{bmatrix} \qquad \begin{array}{c} R_2 - 2R_1 \rightarrow R_2 \\ R_4 - 2R_3 \rightarrow R_4 \\ R_4 - 2R_3 \rightarrow R_4 \\ \begin{bmatrix} 1 & 1 & 0 & 0 & 17 \\ 0 & 1 & 0 & 0 & -31 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 6 \end{bmatrix} \qquad \begin{array}{c} R_1 - R_2 \rightarrow R_1 \\ R_3 - R_4 \rightarrow R_3 \\ \begin{bmatrix} 1 & 0 & 0 & 0 & 48 \\ 0 & 1 & 0 & 0 & -31 \\ 0 & 0 & 1 & 0 & -7 \\ 0 & 0 & 0 & 1 & 6 \end{bmatrix}$

The solutions are a = 48, b = -31, c = -7, d = 6, so the matrix we seek is $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 48 & -31 \\ -7 & 6 \end{bmatrix}$.