SECTION 1.2 (Let me know if you see any typos and I'll correct them. -RH)
16. $\left[\begin{array}{rrrr}1 & 2 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$ corresponds to the system $\left\{\begin{array}{rlrl}x+2 y & + & z & =0 \\ & \left.+\begin{array}{ll}z & = \\ & 0\end{array}\right)=0\end{array}\right.$

The second equation says $z=-1$. Back-substituting this into the first equation gives $x+2 y-1=0$, or $x=1-2 y$. Thus the solution is $x=1-2 t, \quad y=t, \quad z=-1$
28. Solve the system $\left\{\begin{array}{l}2 x_{1}-3 x_{3}=3 \\ 4 x_{1}-3 x_{2}+7 x_{3}=5 \\ 8 x_{1}-9 x_{2}+15 x_{3}=10\end{array}\right.$

$$
\left[\begin{array}{rrrr}
2 & 0 & 3 & 3 \\
4 & -3 & 7 & 5 \\
8 & -9 & 15 & 10
\end{array}\right] \begin{aligned}
& R 2-2 R_{1} \rightarrow R_{2} \\
& R 3-4 R_{1} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{rrrr}
2 & 0 & 3 & 3 \\
0 & -3 & 1 & -1 \\
0 & -9 & 3 & -2
\end{array}\right] \quad R 3-3 R_{2} \rightarrow R_{3}\left[\begin{array}{rrrr}
2 & 0 & 3 & 3 \\
0 & -3 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Even though this is not in row echelon form, it is simple enough that we can draw a conclusion. The last row gives the equation $0 x_{1}+0 x_{2}+0 x_{3}=1$, or $0=1$. Thus the system has NO SOLUTIONS.
32. Solve the system $\left\{\begin{aligned} 2 x+y-z+2 w & =-6 \\ 3 x+4 y & +w=1 \\ x+5 y+2 z+6 w & =-3 \\ 5 x+2 y-z-w & =3\end{aligned}\right.$

$$
\left[\begin{array}{rrrrr}
2 & 1 & -1 & 2 & -6 \\
3 & 4 & 0 & 1 & 1 \\
1 & 5 & 2 & 6 & -3 \\
5 & 2 & -1 & -1 & 3
\end{array}\right] \quad \begin{aligned}
& R_{1} \leftrightarrow R_{3} \\
& \text { (gets 1 in } \\
& \text { upper-left) }
\end{aligned}\left[\begin{array}{rrrrr}
1 & 5 & 2 & 6 & -3 \\
3 & 4 & 0 & 1 & 1 \\
2 & 1 & -1 & 2 & -6 \\
5 & 2 & -1 & -1 & 3
\end{array}\right] \quad \begin{aligned}
& R_{2}-3 R_{1} \rightarrow R_{2} \\
& R_{3}-2 R_{1} \rightarrow R_{3} \\
& R_{4}-5 R_{1} \rightarrow R_{4}
\end{aligned}
$$

$$
\left[\begin{array}{rrrrr}
1 & 5 & 2 & 6 & -3 \\
0 & -11 & -6 & -17 & 10 \\
0 & -9 & -5 & -10 & 0 \\
0 & -23 & -11 & -31 & 18
\end{array}\right]
$$

$$
\begin{aligned}
& -R_{2} \rightarrow R_{2} \\
& -R_{3} \rightarrow R_{3} \\
& -R_{4} \rightarrow R_{4} \\
& \text { (gets rid of } \\
& \text { negatives) }
\end{aligned} \quad\left[\begin{array}{rrrrr}
1 & 5 & 2 & 6 & -3 \\
0 & 11 & 6 & 17 & -10 \\
0 & 9 & 5 & 10 & 0 \\
0 & 23 & 11 & 31 & -18
\end{array}\right]
$$

$$
R_{4}-2 R_{2} \rightarrow R_{4}
$$ (gets a 1 in $2^{\text {nd }}$ column)

$\left[\begin{array}{rrrrr}1 & 5 & 2 & 6 & -3 \\ 0 & 11 & 6 & 17 & -10 \\ 0 & 9 & 5 & 10 & 0 \\ 0 & 1 & -1 & -3 & 2\end{array}\right]$
$R_{2} \leftrightarrow R_{4} \quad\left[\begin{array}{rrrrr}1 & 5 & 2 & 6 & -3 \\ 0 & 1 & -1 & -3 & 2 \\ 0 & 9 & 5 & 10 & 0 \\ 0 & 11 & 6 & 17 & -10\end{array}\right]$
$R_{3}-9 R_{2} \rightarrow R_{3}$ $R_{4}-11 R_{2} \rightarrow R_{4}$
$\left[\begin{array}{rrrrr}1 & 5 & 2 & 6 & -3 \\ 0 & 1 & -1 & -3 & 2 \\ 0 & 0 & -14 & -37 & 18 \\ 0 & 0 & -17 & -50 & 32\end{array}\right]$
$-\frac{1}{14} R_{3} \rightarrow R_{3}\left[\begin{array}{rrrrr}1 & 5 & 2 & 6 & -3 \\ 0 & 1 & -1 & -3 & 2 \\ 0 & 0 & 1 & \frac{37}{14} & -\frac{18}{14} \\ 0 & 0 & -17 & -50 & 32\end{array}\right] \quad R_{4}+17 R_{3} \rightarrow R_{4}$
$\left[\begin{array}{rrrrr}1 & 5 & 2 & 6 & -3 \\ 0 & 1 & -1 & -3 & 2 \\ 0 & 0 & 1 & \frac{37}{14} & -\frac{18}{14} \\ 0 & 0 & 0 & -\frac{71}{14} & \frac{142}{14}\end{array}\right] \quad-\frac{14}{71} R_{4} \rightarrow R_{4}\left[\begin{array}{rrrrr}1 & 5 & 2 & 6 & -3 \\ 0 & 1 & -1 & -3 & 2 \\ 0 & 0 & 1 & \frac{37}{14} & -\frac{18}{14} \\ 0 & 0 & 0 & 1 & -2\end{array}\right]$

Back-substitution gives the solution: $x=1, y=0, z=4, w=-2$
40. The matrix $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$ is a coefficient matrix for a homogeneous system. Thus the fourth column consists of coefficients of the fourth variable; the constant terms of the two equations are understood to all be zeros and do not appear as a last column. Thus this matrix (which is already in reduced row echelon form) corresponds to the system $\left\{\begin{aligned} x+0 y+0 z+0 w & =0 \\ 0 x+y+z+0 w & =0\end{aligned}\right.$
The solutions can be read off as $x=0, y=-t, z=t, w=s$.
44. The matrix $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ corresponds to the system system $\left\{\begin{array}{l}0 x+0 y=0 \\ 0 x+0 y=0 \\ 0 x+0 y=0\end{array}\right.$

Any values of x and y automatically satisfy this system, so the solutions are $x=s, y=t$ for any real numbers s and t.
62. Solve the system $\left\{\begin{aligned} x^{2}+2 y^{3} & =2 \\ 3 x^{2}-y^{3} & =13\end{aligned}\right.$

This system is not linear, so we begin by making the substitutions $u=x^{2}$ and $v=y^{3}$. The new system is $\left\{\begin{aligned} u+2 v & =2 \\ 3 u-v & =13\end{aligned}\right.$ It is linear and it is solved as follows. $\left[\begin{array}{rrr}1 & 2 & 2 \\ 3 & -1 & 13\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & 2 \\ 0 & -7 & 7\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 2 & 2 \\ 0 & 1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 0 & 4 \\ 0 & 1 & -1\end{array}\right]$

Thus the solution to the new system is $u=4, v=-1$. This means $x^{2}=4$ and $y^{3}=-1$, so $x= \pm 2$ and $y=-1$. Therefore, the original system has TWO solutions $x=2, y=-1$ and $x=-2, y=-1$.

Editorial comment: A linear system would never have just two solutions. A linear system always has zero, one or infinitely many solutions. However, the system we solved here was not a linear system, so it should not be surprising that there were two solutions. - RH

