SECTION 1.1 (Let me know if you see any typos and I'll correct them. -RH)
2. The equation $3 x-4 x y=0$ is NOT LINEAR because the term $4 x y$ has two variables multiplied together.

Note. A few people divided both sides by x to get $3+4 y=0$, or $4 y=-3$, which is linear. However, this is a different equation from what we started out with. For example, note that $x=0, y=5$ is a solution to $3 x+4 x y=0$, but not to $4 y=-3$. The illegal move was dividing by x, which is potentially 0 . Moral: Never divide both sides of an equation by a variable expression unless you are sure that expression cannot equal 0.
6. The equation $(\sin 2) x-y=14$ is LINEAR because $\sin 2$ is a constant.
14. $\left\{\begin{aligned} x-y & =4 \\ 2 y+z & =6 \\ 3 z & =6\end{aligned}\right.$

Back-substitution gives $x=6, y=2, z=2$, and this checks back.
16. $\left\{\begin{aligned} x_{1}+x_{2}+x_{3} & =0 \\ x_{2} & =0\end{aligned}\right.$

Back-substitution gives $x_{2}=0$ and $x_{1}=-x_{3}$, so solution is $x_{1}=-t, x_{2}=0, x_{3}=t$, which checks back.
18. $\left\{\begin{array}{c}x+3 y=2 \\ -x+2 y=3\end{array}\right.$

Adding the two equations gives $5 y=5$, or $y=1$. Plugging this back into either of the equations in the system gives $x=-1$, so the solution is $x=-1, y=1$, which checks back.

In graphing the two equations in the system, we get two lines which intersect at the point $(-1,1)$. Since this point is on both lines, it has to be a solution to both equations, so $(x, y)=(-1,1)$ is the solution of the system, which agrees with the work done above.

