Name:_____

R. Hammack

Score:____

Directions No calculators. Please put all phones, etc., away.

1. (4 points) Complete the following truth tables.

P	Q	$P \Rightarrow Q$
Т	Т	
\mathbf{T}	F	
F	Τ	
F	F	

$$\begin{array}{c|cc} Q & R & Q \Leftrightarrow R \\ \hline T & T & \\ T & F & \\ F & T & \\ \end{array}$$

F

F

2. (12 points) Complete the truth table to decide if $P \Rightarrow (Q \land R)$ and $(\sim P) \lor (Q \Leftrightarrow R)$ are logically equivalent.

P	Q	R
Т	Т	Т
Τ	Τ	F
Τ	F	Τ
Τ	F	F
F	Τ	Τ
F	Τ	F
F	F	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

Are they logically equivalent? Why or why not?

3. (6 points) Suppose the statement $(P \lor \sim P) \Leftrightarrow (P \land Q \land \sim R)$ is **true**. Find the truth values of P, Q and R. (This can be done without a truth table.)

4.	(12 points) This problem conce P : For each $n \in \mathbb{Z}$, there exist		the following statement. The number $m \in \mathbb{Z}$ for which $n + r$	n = 0.			
	(a) Is the statement P true o	or fa	lse? Explain.				
	(b) Write the statement P in	syn	nbolic form.				
	(c) Form the negation $\sim P$ of	of yo	ur answer from (b), and simplif	y.			
	(d) Write the negation $\sim P$ as an English sentence. (The sentence may use mathematical symbols.)						
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
5.	(6 points) Complete the first a	and l	last lines of each of the following	g proof outlines.			
	Proposition: If P, then Q. Proof: (Direct)		Proposition: If P, then Q. Proof: (Contrapositive)	Proposition: If P, then Q. Proof: (Contradiction)			
	Suppose		Suppose	Suppose			
	: Therefore •		: Therefore ■	: Therefore			
		1		·			

6. (15 points) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. **Prove:** If $a \equiv b \pmod{n}$, then $a^2 \equiv b^2 \pmod{n}$.

[Use direct proof.]

7. (15 points) Suppose $a \in \mathbb{Z}$. **Prove:** If $100 \nmid a^2$, then a is odd or $5 \nmid a$.

[Use contrapositive.]

8.	(15 points)	Prove:	If $a \in \mathbb{Z}$,	then 4 \	$(a^2 - 3)$).
0.	(10 Politos	, 11000.	$u \subset \omega$	011011 1	(\alpha \cdot	,.

[Contradiction may be easiest.]

9. (15 points) **Prove:** If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

[Try cases.]