Name: \qquad R. Hammack

Score: \qquad

Directions No calculators. Please put all phones, etc., away.

1. (4 points) Complete the following truth tables.

P	Q	$P \Rightarrow Q$
T	T	
T	F	Q R $Q \Leftrightarrow R$ F T T T F F T F F T F F

2. (12 points) Complete the truth table to decide if $P \Rightarrow(Q \wedge R)$ and $(\sim P) \vee(Q \Leftrightarrow R)$ are logically equivalent.

Are they logically equivalent? Why or why not?
3. (6 points) Suppose the statement $(P \vee \sim P) \Leftrightarrow(P \wedge Q \wedge \sim R)$ is true.

Find the truth values of P, Q and R. (This can be done without a truth table.)
4. (12 points) This problem concerns the following statement.
$P:$ For each $n \in \mathbb{Z}$, there exists a number $m \in \mathbb{Z}$ for which $n+m=0$.
(a) Is the statement P true or false? Explain.
(b) Write the statement P in symbolic form.
(c) Form the negation $\sim P$ of your answer from (b), and simplify.
(d) Write the negation $\sim P$ as an English sentence. (The sentence may use mathematical symbols.)
5. (6 points) Complete the first and last lines of each of the following proof outlines.

Proposition: If P, then Q.
Proof: (Direct)
Suppose
$\quad \vdots$
Therefore

Proposition: If P, then Q.
Proof: (Contradiction)
Suppose \qquad
\vdots
Therefore \qquad .
6. (15 points) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.

Prove: If $a \equiv b(\bmod n)$, then $a^{2} \equiv b^{2}(\bmod n)$.
[Use direct proof.]
7. (15 points) Suppose $a \in \mathbb{Z}$. Prove: If $100 \nmid a^{2}$, then a is odd or $5 \nmid a$. [Use contrapositive.]
9. (15 points) Prove: If $n \in \mathbb{N}$, then $1+(-1)^{n}(2 n-1)$ is a multiple of 4 .

