\qquad

Directions No calculators. Please put all phones, etc., away.

1. Short Answer:
(a) Give at least one statement that is logically equivalent to $P \Rightarrow Q$.
(b) State DeMorgan's Laws.
2. Write a truth table to decide if $P \Rightarrow \sim Q$ and $(\sim P) \vee(\sim Q)$ are logically equivalent.
3. Suppose the statement $((R \wedge S) \Rightarrow P) \Leftrightarrow(Q \wedge \sim Q)$ is true. Find the truth values of R, S and P. (This can be done without a truth table.)
4. This problem concerns the following statement.
$P:$ Given any $x \in \mathbb{R}$, there exists an element $y \in \mathbb{R}$ for which $x y=1$.
(a) Is the statement P true or false? Explain.
(b) Write the statement P in symbolic form.
(c) Form the negation $\sim P$ of your answer from (b), and simplify.
(d) Write the negation $\sim P$ as an English sentence. (The sentence may use mathematical symbols.)
5. A geometric sequence with ratio r is a sequence of numbers for which any term is r times the previous term. If the first term of the sequence is a, then the sequence is $a, a r, a r^{2}, a r^{3}, a r^{4}, a r^{5} \ldots$. Write an algorithm whose input is three numbers $a, r \in \mathbb{R}$, and $n \in \mathbb{N}$, and whose output is the first n terms of the geometric sequence with first term a and ratio r.
6. Prove: If a is an even integer, then a^{2} is even.
7. Suppose $n \in \mathbb{Z}$. Prove: If $3 \nmid n^{2}$, then $3 \nmid n$.
8. Prove: If $n \in \mathbb{Z}$, then $4 \nmid\left(n^{2}+2\right)$.
9. Suppose $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. Prove: If $a \equiv b(\bmod n)$ and $a \equiv c(\bmod n)$, then $c \equiv b(\bmod n)$.
