Name: \qquad R. Hammack

Score: \qquad

Directions: Answer each question in the space provided. To get full credit you must show all of your work, unless instructed otherwise. Use of calculators is not allowed on this test.

1. (10 points) Write each set by listing its elements between braces.
(a) $\{m \in \mathbb{N}: 3 \mid m\}=$
(b) $\left\{x \in \mathbb{R}: x^{2}-2 x=0\right\}=$
(c) $\mathscr{P}(\{1,2\})=$
(d) $\{1,2\} \times \mathscr{P}(\{1,2\})=$
(e) $\{1,2\} \cap \mathscr{P}(\{1,2\})=$
2. (6 points)
(a) Suppose the following statement is false: $\quad(P \wedge \sim Q) \Rightarrow(R \Rightarrow S)$

Is there enough information given to determine the truth values of P, Q, R and S ? If so, what are they?
(b) Write a sentence that is the negation of the following sentence:

There exists a real number a for which $a+x=x$ for every real number x.
(c) Decide if the following statement true or false. Briefly justify answer. $\forall n \in \mathbb{N}, \exists X \in \mathscr{P}(\mathbb{N}),|X|=n-1$
3. (6 points) Write a truth table for $(P \Rightarrow Q) \Leftrightarrow(P \vee Q)$.
4. (6 points) A 5-card poker hand is called a flush if all cards are the same suit. How many different flushes are there?
5. (6 points) Consider 4-card hands dealt off of a standard 52 -card deck. How many hands are there for which all 4 cards are of the same suit or all 4 cards are red?
6. (6 points) In how many ways can you place 20 identical balls into five different boxes?
7. (6 points) Suppose $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$.

Prove: If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a c \equiv b d(\bmod n)$.
8. (6 points) Prove: If $n \in \mathbb{Z}$, then $4 \mid n^{2}$ or $4 \mid\left(n^{2}+3\right)$.
9. (6 points) Prove: If $n \in \mathbb{Z}$, then $4 \nmid\left(n^{2}-3\right)$.
10. (6 points) Suppose $a, b \in \mathbb{Z}$. Prove $a b$ is odd if and only if both a and b are odd.
11. (6 points) Prove or disprove: If a relation R on a set A is both transitive and symmetric, then it is also reflexive.

The questions on this page involve the function $f: \mathbb{R} \times \mathbb{N} \rightarrow \mathbb{R} \times \mathbb{N}$ defined as $f((x, y))=(3 x y, y)$
12. (6 points) Is f is injective?
13. (6 points) Is f is surjective?
14. (6 points) Does the inverse function f^{-1} exist? If so, find it.
15. (6 points) Use mathematical induction to prove $2^{1}+2^{2}+2^{3}+2^{4}+\cdots+2^{n}=2^{n+1}-2$ for every $n \in \mathbb{N}$.
16. (6 points) Prove: If $a, b \in \mathbb{Z}$, then $a^{2}-4 b-3 \neq 0$.

