1. Expand and simplify: $(1+a)^5 =$

2. Use the binomial theorem to show why $3^n = 2^0 \binom{n}{0} + 2^1 \binom{n}{1} + 2^2 \binom{n}{2} + 2^3 \binom{n}{3} + \dots + 2^n \binom{n}{n}$

Name: Quiz $11 \diamondsuit$ MATH 211 February 23, 2023

1. Expand and simplify: $(a+2)^4 =$

2. Use the binomial theorem to show why $4^n = 3^0 \binom{n}{0} + 3^1 \binom{n}{1} + 3^2 \binom{n}{2} + 3^3 \binom{n}{3} + \dots + 3^n \binom{n}{n}$

1. Expand and simplify: $(1+a)^6 =$

2. Use the binomial theorem to show why $2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n}$

Name: _____ Quiz 11 \heartsuit MATH 211 February 23, 2023

1. Expand and simplify: $(a+2)^4 =$

2. Use the binomial theorem to show why $3^n = 2^0 \binom{n}{0} + 2^1 \binom{n}{1} + 2^2 \binom{n}{2} + 2^3 \binom{n}{3} + \dots + 2^n \binom{n}{n}$