MATH 123

Visualization

Day 1 Math as *Readymade*

Richard Hammack

http://www.people.vcu.edu/~rhammack/Math123/

Thomas Eakins *Portrait of Professor Henry A. Roland* 1897

Joseph Cornell, Solar Set, c. 1950

Marcel Duchamp

Marcel Duchamp

DANGER/DANCER 1920

The Gift, 1921

The Gift, 1921

Indestructible object (or object to be destroyed) 1964 replica of 1923 origonal

1908

1908

Admiration of the Orchestrelle for the Cinematograph, 1919

One day I was told about some mathematical objects at the Institut Poincaré in Paris. These were built ... to explain algebraic equations. I went to see them, although I am not particularly interested in mathematics. I didn't understand a thing, but the shapes were so unusual, as revolutionary as anything that is being done today in painting or in sculpture. And I spent several days photographing and sketching them with the intention of doing a series of paintings influenced and inspired by these objects.

One day I was told about some mathematical objects at the Institut Poincaré in Paris. These were built ... to explain algebraic equations. I went to see them, although I am not particularly interested in mathematics. I didn't understand a thing, but the shapes were so unusual, as revolutionary as anything that is being done today in painting or in sculpture. And I spent several days photographing and sketching them with the intention of doing a series of paintings influenced and inspired by these objects.

One day I was told about some mathematical objects at the Institut Poincaré in Paris. These were built ... to explain algebraic equations. I went to see them, although I am not particularly interested in mathematics. I didn't understand a thing, but the shapes were so unusual, as revolutionary as anything that is being done today in painting or in sculpture. And I spent several days photographing and sketching them with the intention of doing a series of paintings influenced and inspired by these objects.

One day I was told about some mathematical objects at the Institut Poincaré in Paris. These were built ... to explain algebraic equations. I went to see them, although I am not particularly interested in mathematics. I didn't understand a thing, but the shapes were so unusual, as revolutionary as anything that is being done today in painting or in sculpture. And I spent several days photographing and sketching them with the intention of doing a series of paintings influenced and inspired by these objects.

1936

Shakespearean Equation: Measure for Measure, oil on canvas, 1948

1936

Shakespearean Equation: Twelfth Night, oil on canvas, 1948

1936

Shakespearean Equation: King Lear, oil on canvas, 1948

www.math.harvard.edu/history/models

Collection of Harvard University Mathematics Department

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

Collection of Harvard University Mathematics Department

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

Collection of Harvard University Mathematics Department

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

Collection of Harvard University Mathematics Department

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models

www.math.harvard.edu/history/models
Mathematical Model

Collection of Harvard University Mathematics Department

www.math.harvard.edu/history/models

Photography by Hiroshi Sugimoto

Henry Moore

Henry Moore

1946

Osso buco

Henry Moore

Undoubtedly the source of my stringed figures was the Science Museum...I was fascinated by the mathematical models I saw there, which had been made to illustrate the difference of the form that is halfway between a square and a circle. One model had a square at one end with twenty holes along each side, making eighty holes in all. Through these holes strings were threaded and lead to a circle with the same number of holes at the other end. A plane interposed through the middle shows the form that is halfway between a square and a circle. One end could be twisted to produce forms that would be terribly difficult to draw on a flat surface. It wasn't the scientific study of these models but the ability to look through the strings as with a bird cage and see one form within the other which excited me.

Head, 1938

Sculpture with Color, 1943

Excerpt of letter to Ben Nicholson:

John Summerson says there are some marvelous things in a mathematical school in Oxford – sculptural working out of mathematical equations – hidden away in a cupboard – I think I shall go to Oxford as soon as I get back from Leeds.

Wallnut, 1964

Wallnut, 1964

Group I-Concourse, 1951, marble

Dual Form, 1965

Dual Form, 1965

Pierced form, 1964

1948

Construction in Space in the Third and Fourth Dimension, 1960

Dynamic Projection at 30 Degrees

Dynamic Projection at 30 Degrees

Construction in an Egg

"Art must be inspired and controlled by mathematics."

Maquette of a Monument Symbolising the Liberation of the Spirit, 1952

Maquette of a Monument Symbolising the Liberation of the Spirit, 1952

"Art must be inspired and controlled by mathematics."

Pevsner with Peggy Guggenheim, 1940

Head of a Woman, c. 1918

Construction in Space III with Red, 1953

Construction in Space III with Red, 1953

Construction, 1956

Linear Construction in Space No. 1, 1943

Linear Construction in Space No. 1, 1943

Construction in Space with Crystalline Centre, 1938 -1940

Bernar Venet

Photo by Antonie Poupel

Bernar Venet

Photo by Antonie Poupel

Bernar Venet

Photo by Antonie Poupel

$$\begin{split} n V^2 &= \sum_{i=1}^n \left(R_i - \bar{R} \right)^2 = \sum_{i=1}^n R_i^2 - 2\bar{R} \sum_{i=1}^n R_i + n(\bar{R})^2 \\ &= \sum_{i=1}^n R_i^2 - n(\bar{R})^2 \\ &= \sum_{i=1}^n W_i^2 - \left(\sum_{i=1}^n \frac{R_i}{\sqrt{n}} \right)^2 \\ &= \sum_{i=1}^n W_i^2 - W_i^2 \\ &= \sum_{i=2}^n W_i^2 \end{split}$$

$$\begin{array}{cccc} H_{q}(X,A) & \stackrel{\theta}{\longrightarrow} & H_{q}(K,L) & \stackrel{\xi}{\longrightarrow} & \overline{H}_{q}(K,L) & \stackrel{\overline{\theta}}{\longrightarrow} & \overline{H}_{1}(X,A) \\ & \uparrow^{\tilde{t}_{i_{*}}} & \uparrow^{\tilde{k}_{i_{*}}} & \uparrow^{\tilde{t}_{i_{*}}} & \uparrow^{\tilde{t}_{i_{*}}} \\ H_{q}(X,A) & \stackrel{\theta}{\longrightarrow} & \overline{H}_{q}(K,L) & \stackrel{\xi}{\longrightarrow} & \overline{H}_{q}(K,L) & \stackrel{\xi}{\longrightarrow} & \overline{H}_{q}(X,A) \\ & \downarrow^{f_{i_{*}}} & \downarrow^{g} & \downarrow^{\tilde{g}} & \downarrow^{\tilde{f}_{i_{*}}} \\ H_{q}(X_{i},A_{i}) & \stackrel{\theta}{\longrightarrow} & H_{q}(K_{i},L_{i}) & \stackrel{\xi}{\longrightarrow} & \overline{H}_{q}(K_{i},L_{i}) & \stackrel{\xi}{\longrightarrow} & \overline{H}_{q}(X_{i},A_{i}) \end{array}$$

Brenar Venet, acrylic on canvas, 2004

Brenar Venet, acrylic on canvas, 2004

Next time:

Introduction to the Fourth Dimension