MATH 123

Visualization

Day 1
Math as Readymade

Richard Hammack

Thomas Eakins
Portrait of Professor Henry A. Roland 1897

Joseph Cornell, Solar Set, c. 1950

Marcel Duchamp

Marcel Duchamp

1914

1913

Man Ray

DANGER/DANCER

Man Ray

The Gift, 1921

Man Ray

The Gift, 1921

Indestructible object
(or object to be destroyed)
1964 replica of 1923 origonal

1908

Man Ray

1908

Admiration of the Orchestrelle for the Cinematograph, 1919

Man Ray

One day I was told about some mathematical objects at the Institut Poincaré in Paris. These were built ... to explain algebraic equations. I went to see them, although I am not particularly interested in mathematics. I didn't understand a thing, but the shapes were so unusual, as revolutionary as anything that is being done today in painting or in sculpture. And I spent several days photographing and sketching them with the intention of doing a series of paintings influenced and inspired by these objects.

Man Ray

One day I was told about some mathematical objects at the Institut Poincaré in Paris. These were built ... to explain algebraic equations. I went to see them, although I am not particularly interested in mathematics. I didn't understand a thing, but the shapes were so unusual, as revolutionary as anything that is being done today in painting or in sculpture. And I spent several days photographing and sketching them with the intention of doing a series of paintings influenced and inspired by these objects.

Man Ray

One day I was told about some mathematical objects at the Institut Poincaré in Paris. These were built ... to explain algebraic equations. I went to see them, although I am not particularly interested in mathematics. I didn't understand a thing, but the shapes were so unusual, as revolutionary as anything that is being done today in painting or in sculpture. And I spent several days photographing and sketching them with the intention of doing a series of paintings influenced and inspired by these objects.

Man Ray

One day I was told about some mathematical objects at the Institut Poincaré in Paris. These were built ... to explain algebraic equations. I went to see them, although I am not particularly interested in mathematics. I didn't understand a thing, but the shapes were so unusual, as revolutionary as anything that is being done today in painting or in sculpture. And I spent several days photographing and sketching them with the intention of doing a series of paintings influenced and inspired by these objects.

Man Ray

Man Ray

1936

Shakespearean Equation: Measure for Measure, oil on canvas, 1948

Man Ray

Man Ray

1936

Shakespearean Equation: Twelfth Night, oil on canvas, 1948

Man Ray

Man Ray

1936

Shakespearean Equation: King Lear, oil on canvas, 1948

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Mathematical Model

Photography by Hiroshi Sugimoto

Henry Moore

1946

Henry Moore

1946

Osso buco

Henry Moore

Undoubtedly the source of my stringed figures was the Science Museum...I was fascinated by the mathematical models I saw there, which had been made to illustrate the difference of the form that is halfway between a square and a circle. One model had a square at one end with twenty holes along each side, making eighty holes in all. Through these holes strings were threaded and lead to a circle with the same number of holes at the other end. A plane interposed through the middle shows the form that is halfway between a square and a circle. One end could be twisted to produce forms that would be terribly difficult to draw on a flat surface. It wasn't the scientific study of these models but the ability to look through the strings as with a bird cage and see one form within the other which excited me.

Head, 1938

Barbara Hepworth

Barbara Hepworth

Sculpture with Color, 1943

Barbara Hepworth

Excerpt of letter to Ben Nicholson:

John Summerson says there are some marvelous things in a mathematical school in Oxford - sculptural working out of mathematical equations - hidden away in a cupboard - I think I shall go to Oxford as soon as I get back from Leeds.

Barbara Hepworth

Wallnut, 1964

Barbara Hepworth

Wallnut, 1964

Group I-Concourse, 1951, marble

Barbara Hepworth

Dual Form, 1965

Barbara Hepworth

Dual Form, 1965

Pierced form, 1964

1948

1948

Construction in Space in the Third and Fourth
Dimension, 1960

Antoine Pevsner

Dynamic Projection at 30 Degrees

Antoine Pevsner

Dynamic Projection at 30 Degrees

Construction in an Egg

Antoine Pevsner

Maquette of a Monument Symbolising the Liberation of the Spirit, 1952
"Art must be inspired and controlled by mathematics."

Antoine Pevsner

Maquette of a Monument Symbolising the Liberation of the Spirit, 1952
"Art must be inspired and controlled by mathematics."

Pevsner with Peggy Guggenheim, 1940

Naum Gabo

Naum Gabo

1948

Head of a Woman, c. 1918

Naum Gabo

Construction in Space III with Red, 1953

Naum Gabo

Construction in Space III with Red, 1953

Construction, 1956

Naum Gabo

Linear Construction in Space No. 1, 1943

Naum Gabo

Linear Construction in Space No. 1, 1943

Construction in Space with Crystalline Centre, 1938-1940

Bernar Venet

Photo by Antonie Poupel

Bernar Venet

Photo by Antonie Poupel

Bernar Venet

Photo by Antonie Poupel

Bernar Venet, screenprints, 2001

Bernar Venet, screenprints, 2001

$$
\begin{aligned}
n V^{2}=\sum_{i=1}^{n}\left(R_{i}-\bar{R}\right)^{2} & =\sum_{i=1}^{n} R_{i}{ }^{2}-2 \bar{R} \sum_{i=1}^{n} R_{i}+n(\bar{R})^{2} \\
& =\sum_{i=1}^{n} R_{i}{ }^{2}-n(\bar{R})^{2} \\
& =\sum_{i=1}^{n} W_{i}{ }^{2}-\left(\sum_{i=1}^{n} \frac{R_{i}}{\sqrt{n}}\right)^{2} \\
& =\sum_{i=1}^{n} W_{i}{ }^{2}-W_{1}{ }^{2} \\
& =\sum_{i=2}^{n} W_{i}{ }^{2}
\end{aligned}
$$

Bernar Venet, screenprints, 2001

Bernar Venet, screenprints, 2001

Bernar Venet, screenprints, 2001

```
{[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})]\circ[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})]}
    \circ {[(\mp@subsup{u}{}{\prime}\circx)\circ(y\circ\mp@subsup{u}{}{\prime\prime})]\circ[(\mp@subsup{v}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})\circ(\mp@subsup{v}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})]}
={[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})]\circ[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})]}
    \circ {[(\mp@subsup{u}{}{\prime}\circx)\circ(\mp@subsup{v}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})]\circ[(y\circ\mp@subsup{u}{}{\prime\prime})\circ(\mp@subsup{v}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})]}
= {[(v\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime\prime})]\circ[(\mp@subsup{u}{}{\prime}\circx)\circ(\mp@subsup{v}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})]}
    - {[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})]\circ[(y\circ\mp@subsup{v}{}{\prime\prime})\circ(\mp@subsup{u}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})]}
={[(v'\circ}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{u}{}{\prime}\circx)]\circ[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})]
\circ{{[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})]\circ[(y\circ\mp@subsup{v}{}{\prime\prime})\circ(\mp@subsup{u}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})]}
={[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{u}{}{\prime})\circ(\mp@subsup{v}{}{\prime}\circx)]\circ[(\mp@subsup{v}{}{\prime}\circ\mp@subsup{v}{}{\prime})\circ(\mp@subsup{v}{}{\prime\prime}\circ\mp@subsup{v}{}{\prime\prime})]}
```

Bernar Venet, screenprints, 2001

$$
\begin{aligned}
& \left\{\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime} \circ v^{\prime}\right)\right] \circ\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime} \circ v^{\prime}\right)\right]\right\} \\
& \left.0 \quad \therefore\left[\left(u^{\prime} \circ x\right) \circ\left(y \circ u^{\prime \prime}\right)\right] \circ\left[\left(v^{\prime \prime} \circ v^{\prime \prime}\right) \circ\left(v^{\prime \prime} \circ v^{\prime \prime}\right)\right]\right\} \\
& =\left\{\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime} \circ v^{\prime}\right)\right] \circ\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime} \circ v^{\prime}\right)\right]\right\} \\
& \circ\left\{\left[\left(u^{\prime} \circ x\right) \circ\left(v^{\prime \prime} \circ v^{\prime \prime}\right)\right] \circ\left[\left(y \circ u^{\prime \prime}\right) \circ\left(v^{\prime \prime} \circ v^{\prime \prime}\right)\right]\right\} \\
& =\left\{\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime} \circ v^{\prime \prime}\right)\right] \circ\left[\left(u^{\prime} \circ x\right) \circ\left(v^{\prime \prime} \circ v^{\prime \prime}\right)\right]\right\} \\
& \circ\left\{\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime} \circ v^{\prime}\right)\right] \circ\left[\left(y \circ v^{\prime \prime}\right) \circ\left(u^{\prime \prime} \circ v^{\prime \prime}\right)\right]\right\} \\
& =\left\{\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(u^{\prime} \circ x\right)\right] \circ\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime \prime} \circ v^{\prime \prime}\right)\right]\right\} \\
& \circ\left\{\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime} \circ v^{\prime}\right)\right] \circ\left[\left(y \circ v^{\prime \prime}\right) \circ\left(u^{\prime \prime} \circ v^{\prime \prime}\right)\right]\right\} \\
& =\left\{\left[\left(v^{\prime} \circ u^{\prime}\right) \circ\left(v^{\prime} \circ x\right)\right] \circ\left[\left(v^{\prime} \circ v^{\prime}\right) \circ\left(v^{\prime \prime} \circ v^{\prime \prime}\right)\right]\right\}
\end{aligned}
$$

Brenar Venet, acrylic on canvas, 2004

Brenar Venet, acrylic on canvas, 2004

Next time:

Introduction to the Fourth Dimension

