MATH 121 (Day 8)

More Anamorphoses and Projective Geometry

 $http://www.people.vcu.edu/{\sim}rhammack/Math121/index.html$

István Orosz (1997)

István Orosz (1997)

István Orosz (1997)

The Mathematics of Anamorphosis

The Mathematics of Anamorphosis

How To Make an Anamorphosis (Top View)

Kokichi Sugihara

Meiji Institute for Advanced Study of Mathematical Sciences Meiji University, Japan

Tim Noble and Sue Webster

Real Life is Rubbish

Tim Noble and Sue Webster

How to Make "Shadow Images"

wall, you need an obstruction at point $\left(\frac{xz}{10}, \frac{yz}{10}, z\right)$ in space.

MATH 121 (Day 8)

Projective Geometry

The Projective Plane

The Projective Plane

The Projective Plane

The Projective Plane

The Projective Plane

The Euclidean Plane

...add a line at infinity

The Projective Plane

The Euclidean Plane

Any two points determine a line.

...add a line at infinity

The Projective Plane

The Euclidean Plane

Any two points determine a line. Any two lines determine a point, *unless the lines are parallel.* ...add a line at infinity

The Projective Plane

The Euclidean Plane

Any two points determine a line. Any two lines determine a point, *unless the lines are parallel.* ...add a line at infinity

The Projective Plane

Any two points determine a line.

The Euclidean Plane

Any two points determine a line. Any two lines determine a point, *unless the lines are parallel.*

...add a line at infinity

The Projective Plane

Any two points determine a line. Any two lines determine a point.

The Inventors of Projective Geometry

Girard Desargues 1591–1661

The Inventors of Projective Geometry

Girard Desargues 1591–1661

Blaise Pascal 1623–1662

If two triangles are in perspective...

Rough idea of proof:

It's this diagram seen in perspective. Sets of parallel lines meet on the horizon.

Pascal's Theorem: (The Magic Hexagram) If a hexagon is arbitrarily inscribed in a circle (or conic), then...

Pascal's Theorem: (The Magic Hexagram)

If a hexagon is arbitrarily inscribed in a circle (or conic), then...

Pascal's Theorem: (The Magic Hexagram) If a hexagon is arbitrarily inscribed in a circle (or conic), then...

Pascal's Theorem: (The Magic Hexagram) If a hexagon is arbitrarily inscribed in a circle (or conic), then...

Pascal's Theorem: (The Magic Hexagram)

If a hexagon is arbitrarily inscribed in a circle (or conic), then...

Pascal's Theorem: (The Magic Hexagram)

If a hexagon is arbitrarily inscribed in a circle (or conic), then...

Rough idea of proof:

It's this diagram seen in perspective. Sets of parallel lines meet on the horizon. Thanks for taking MATH 121!

Thanks for taking MATH 121!

Next time: Crit Day!

 $http://www.people.vcu.edu/{\sim}rhammack/Math121/index.html$