MATH 121
 (Day 8)

More Anamorphoses
 and
 Projective Geometry

http://www.people.vcu.edu/~rhammack/Math121/index.html

István Orosz (1997)

István Orosz (1997)

István Orosz (1997)

István Orosz

Edgar Müller, 2008

Edgar Müller, 2008

Edgar Müller, 2008

Edgar Müller, 2008

The Mathematics of Anamorphosis

The Mathematics of Anamorphosis

How To Make an Anamorphosis (Top View)

picture/grid

Kokichi Sugihara
Meiji Institute for Advanced Study of Mathematical Sciences Meiji University, Japan

Shigeo Fukuda (1936-2009)

Shigeo Fukuda (1936-2009)

Shigeo Fukuda (1936-2009)

Shigeo Fukuda (1936-2009)

Shigeo Fukuda (1936-2009)

Shigeo Fukuda (1936-2009)

Tim Noble and Sue Webster

Tim Noble and Sue Webster

How to Make "Shadow Images"

Wall is 10 feet from light source. To cast shadow at point ($x, y, 10$) on wall, you need an obstruction at point $\left(\frac{x z}{10}, \frac{y z}{10}, z\right)$ in space.

MATH 121
 (Day 8)

Projective Geometry

The Idea Behind Projective Geometry

The Idea Behind Projective Geometry

The Euclidean Plane

The Idea Behind Projective Geometry

The Euclidean Plane

The Idea Behind Projective Geometry

The Euclidean Plane

The Projective Plane

The Idea Behind Projective Geometry

The Euclidean Plane

The Idea Behind Projective Geometry

The Euclidean Plane

The Idea Behind Projective Geometry

The Euclidean Plane

The Idea Behind Projective Geometry

The Euclidean Plane
...add a line at infinity

The Idea Behind Projective Geometry

The Euclidean Plane
...add a line at infinity

The Projective Plane

Any two points determine a line.

The Idea Behind Projective Geometry

The Euclidean Plane
...add a line at infinity

The Projective Plane

Any two points determine a line.
Any two lines determine a point, unless the lines are parallel.

The Idea Behind Projective Geometry

The Euclidean Plane

Any two points determine a line. Any two lines determine a point, unless the lines are parallel.
...add a line at infinity

The Projective Plane

Any two points determine a line.

The Idea Behind Projective Geometry

The Euclidean Plane
...add a line at infinity

The Projective Plane

Any two points determine a line. Any two lines determine a point. unless the lines are parallel.

The Inventors of Projective Geometry

Girard Desargues 1591-1661

The Inventors of Projective Geometry

Girard Desargues 1591-1661

Blaise Pascal
1623-1662

Desargue's Theorem:

If two triangles are in perspective...

Desargue's Theorem:

If two triangles are in perspective...

... then their corresponding sides, if extended, will intersect at three points that lie on a straight line.

Desargue's Theorem:

If two triangles are in perspective...

... then their corresponding sides, if extended, will intersect at three points that lie on a straight line.

Desargue's Theorem:

If two triangles are in perspective...

... then their corresponding sides, if extended, will intersect at three points that lie on a straight line.

Desargue's Theorem:

If two triangles are in perspective...

... then their corresponding sides, if extended, will intersect at three points that lie on a straight line.

Desargue's Theorem:

If two triangles are in perspective...

... then their corresponding sides, if extended, will intersect at three points that lie on a straight line.

Rough idea of proof:

It's this diagram seen in perspective.
Sets of parallel lines meet on the horizon.

Pascal's Theorem: (The Magic Hexagram)
If a hexagon is arbitrarily inscribed in a circle (or conic), then...

Pascal's Theorem: (The Magic Hexagram)
If a hexagon is arbitrarily inscribed in a circle (or conic), then...

... opposite sides, if extended, will intersect at three points that lie on a straight line.

Pascal's Theorem: (The Magic Hexagram)
If a hexagon is arbitrarily inscribed in a circle (or conic), then...

... opposite sides, if extended, will intersect at three points that lie on a straight line.

Pascal's Theorem: (The Magic Hexagram)
If a hexagon is arbitrarily inscribed in a circle (or conic), then...

... opposite sides, if extended, will intersect at three points that lie on a straight line.

Pascal's Theorem: (The Magic Hexagram)
If a hexagon is arbitrarily inscribed in a circle (or conic), then...

... opposite sides, if extended, will intersect at three points that lie on a straight line.

Pascal's Theorem: (The Magic Hexagram)
If a hexagon is arbitrarily inscribed in a circle (or conic), then...

... opposite sides, if extended, will intersect at three points that lie on a straight line.

Rough idea of proof:

It's this diagram seen in perspective.
Sets of parallel lines meet on the horizon.

Thanks for taking MATH 121!

Thanks for taking MATH 121!

Next time: Crit Day!

