
July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 465

Chapter 21

Complexity of Algorithms

The goal of this chapter is to develop the language, ideas and notations that com-
puter scientists use to analyze the speeds algorithms, and to compare and contrast
the speeds of di↵erent algorithms that perform the same task. This kind of analysis
is called the time-complexity of an algorithm, or, more often, just the complex-
ity of an algorithm.

In Chapter 8 we noted that the number of steps needed for an algorithm to
preform a task depends on what the input is. For example, an algorithm that puts
a list into numeric order is likely to expend fewer steps on an input list that’s already
sorted than one that’s not. Also, as a general rule, the bigger the input, the more
steps the algorithm needs to process it. We introduced the idea of measuring the
worst-case performance of an algorithm with a function f(n), meaning that for any
input of size n, the algorithm takes f(n) or fewer steps to process it. Perhaps for
most inputs of size n the algorithm takes fewer than f(n) steps, but for some “bad”
inputs the algorithm may have to take as many as f(n) steps. (We will be a bit
vague about what is meant by the “size” of the input, and in general this depends
on context. Size could be in bytes, number of list entries, or number of vertices in
an input graph, etc.)

In this chapter we will continue to measure performance of algorithms in terms
of functions f(n), but we will sharpen our understanding of how to compare such
functions: Given two of them, we will describe rigorously when one is better than
the other, or when one is just as good as the other.

To start the discussion, suppose we have two algorithms, Algorithm 1 and Algo-
rithm 2, that do exactly the same thing. Let’s say Algorithm 1 takes f(n) = 10+x2

steps (in the worst case) to process an input of size n, whereas Algorithm 2 takes
g(n) = 5 + 1

100
x3 steps.

Which algorithm is better?
To answer this question, let’s plot graphs of f(n) and g(n), as in Figure 21.1.

The top graph plots them for values of n from 0 to 12. In this window it appears
that f(n) is bigger than g(n), and is growing much more quickly than g(n). We
might take this as evidence that Algorithm 2 is better, because it involves a smaller
number g(n) of steps.

465

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 466

466 Discrete Math Elements

However, the bottom part of the figure takes a wider view, and plots the same
two functions for 0  n  120. We see that g(n) overtakes f(n) somewhere around
n = 100, and thereafter f(n) < g(n). Thus, contrary to the pervious paragraph’s
hasty conclusion, it is Algorithm 1 that is better, because it only requires f(n)
steps, and this is less than g(n) for all of the infinitely many values of n except the
first 100 or so.

The next section develops a method for comparing two such functions f and g,
a system that filters out any superficial idiosyncrasies and captures their essential
long-range behavior.

n

y

st
ep

s
n
ee
d
ed

to
p
ro
ce
ss

in
p
u
t

size of input

f(n) = 10 + n2 (Algorithm 1)

g(n) = 5 + 1
100n

3 (Algorithm 2)

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

10

12

14

16

18

20

n

y

st
ep

s
n
ee
d
ed

to
p
ro
ce
ss

in
p
u
t

size of input

f(n) = 10 + n2 (Algorithm 1)

g(n) = 5 + 1
100n

3 (Algorithm 2)

10 20 30 40 50 60 70 80 90 100110120

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

n f(n) g(n)
10 110 15

100 10,010 10,005

1,000 1,000,010 10,000,005

10,000 100,000,010 10,000,000,005

100,000 10,000,000,010 10,000,000,000,005

Fig. 21.1 Functions f(n) and g(n) for 0  n  12 (top) and 0  n  120 (bottom). At
first, g(n) < f(n), but beyond about n = 100 the order is reversed, and g(n) > f(n). The
table shows why: each time n increases by a factor of 10, f(n) increases about 100-fold,
while g(n) increases about 1000-fold. In other words, though it starts o↵ smaller, g(n)
grows about 10 times faster than f(n), and eventually overtakes it.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 467

Complexity of Algorithms 467

21.1 Big-O Notation

In Figure 21.1, we regarded f(n) as better than g(n) because there was a number
N = 100 for which f(n) < g(n) whenever n > 100. This leads to the first of two
guiding principles that will yield a meaningful formulation of algorithm complexity.

Guiding Principle A For worst-case performance, f(n) is as good as or better
than g(n) if there exists an integer N for which f(n)  g(n) whenever n > N .

To motivate our second guiding principle, suppose Algorithm 1 has worst-case
performance f(n), and Algorithm 2 has worst-case performance g(n), and there is a
number A for which f(n)  A · g(n). This means Algorithm 1 may need to preform
up to A times as many steps as Algorithm 2. So if Algorithm 1 is too slow compared
to Algorithm 2, this can be remedied by running Algorithm 1 on a computer that
is A times faster than the one Algorithm 2 runs on.

But if there is no numberA for which f(n)  A·g(n) for all n, then f(n) > A·g(n)
for some n, no matter how big A is. This means that for some inputs, Algorithm 1
is slower than Algorithm 2, no matter how fast the computer it is run is.

Guiding Principle B For worst-case performance, f(n) is as good as or better
than g(n) if there exists a number A for which f(n)  A · g(n).

These principles suggest that if f(n) is “as good as or better” than g(n),
then it is not necessarily true that f(n)  g(n) for all n. Instead, f(n) is “as
good as or better” than g(n) if there are positive numbers N and A for which
f(n)  A · g(n) for all n > N . This leads to the chapter’s main definition, a means
of comparing functions in the context of our two guiding principles.

Definition 21.1. If f and g are functions of n, then f is of order at most g,
written “f(n) is O

�
g(n)

�
,” if there exist positive numbers N and A for which

|f(n)|  A · |g(n)|
for all n > N . (In this case we sometimes say “f(n) is big-O of g(n).”)

Two comments: First, we usually think of n as an integer (input size), but we often
interpret it as a real number in the definition. This is done to make the graphs
of f and g the continuous smooth curves that we are familiar with from calculus.
(And it is a harmless assumption, as integers are real numbers.) Second, we tend
to think of f(n) and g(n) as being positive (measuring run-time). But to make the
definition useful and robust, they appear in absolute value.

Think of Definition 21.1 as giving a way of saying that one function f(n) is less-
than-or-equal to another function g(n); a way that glosses over superfluous details
and captures the big picture. If f(n) is O

�
g(n)

�
, then, for all intents and purposes,

f  g in the sense that f(n)  A·g(n) when n is large. In other words, compared to
g(n), the function f(n) does not grow beyond a finite, constant multiple A of g(n).

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 468

468 Discrete Math Elements

In this sense, f(n) being O
�
g(n)

�
means that the long-term growth of f(n)

compares favorably with that of g(n). The definition gives a concise way of saying
that f(n) never gets “too far” beyond g(n).

Notice that proving that f(n) is O
�
g(n)

�
amounts to proving the statement

9A > 0, 9N > 0, 8n > N, |f(n)|  A · |g(n)|.

To prove it, we must find values for A and N for which |f(n)|  A · |g(n)| is true
for all n > N . Usually A and N will suggest themselves from f and g.

Example 21.1. Show that the polynomial f(n) = 3n� 2 + 4n2 is O
�
n2
�
.

Solution As long as n > 1 we have n  n2 and n2  n3, so
��f(n)

�� =
��3n� 2 + 4n2

��  |3n|+ |2|+ |4n2| (triangle inequality (20.7), (20.8))

= 3n + 2 + 4n2

< 3n2 + 2n2 + 4n2

= 9n2 = 9 · |n2|.

So if A = 9 and N = 1, then
��f(n)

��  A
��n2

�� when n > N . Thus f(n) is O
�
n2
�
.

Next we will compare power, exponential and logarithm functions to one an-
other. Our first result explains the relations among the power functions.

Proposition 21.1. If 1  d  `, then the power function nd is O
�
n`
�
. However,

if d < ` then n` is not O
�
nd
�
.

Proof. Say ` � d. Let A = N = 1. We immediately get nd  An` for n > N . As
all terms are positive,

��nd
��  A

��n`
�� for n > N . Thus nd is O

�
n`
�
by Definition 21.1.

Now suppose d < `. We need to show n` is not O
�
nd
�
. Suppose for the sake of

contradiction that n` is O
�
nd
�
. Definition 21.1 guarantees positive numbers A and

N for which
��n`

��  A
��nd

�� when n > N . Dropping absolute values (all terms are

positive) and dividing both sides by nd, we get n`

nd  A, so n`�d  A for all n > N .
As `� d is positive, the power function n`�d grows arbitrarily large as n increases.
Thus n`�d > A for large enough n, contradicting the previous sentence.

If you know calculus, you have some useful tools for comparing functions. Con-
sider the next proposition. (If you don’t know calculus, you can ignore it.)

Proposition 21.2. Given functions f and g, if lim
n!1

f(n)
g(n) = L, and L is finite,

then f(n) is O
�
g(n)

�
. If lim

n!1
f(n)
g(n) = ±1, then f(n) is not O

�
g(n)

�
.

For a proof, do Exercises 11 and 12. In applying Proposition 21.2 it is likely that
L’Hôpital’s rule comes into play. To see how, let’s do Example 21.1 this way.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 469

Complexity of Algorithms 469

To show 3n � 2 + 4n2 is O
�
n2
�
, just evaluate lim

n!1

3n� 2 + 4n2

n2
= lim

n!1

3+8n

2n

= lim
n!1

8

2
= 4. As 4 is finite, Proposition 21.2 says the function 3n � 2 + 4n2 is

O
�
n2
�
. Again, if you don’t know calculus, you can ignore this. (But take calculus!)

Let’s use Proposition 21.1 to compare specific power functions. Figure 21.2
shows the graphs of y = nd for d = 1, 2, . . . , 5. In order show the big-picture, the
scale on the y-axis is compressed logarithmically, so that in each unit the y value
doubles. This view changes the appearance of the power functions, as they “flatten
out” as n increases. (Compare to this to the same functions in Figure 20.2.)

You can see that by n = 30, the di↵erence between (say) n4 and n5 is vast, and
getting vaster. This is in agreement with Proposition 21.1, which says n5 is not
O
�
n4
�
; it grows beyond any finite multiple of n4.

It is interesting to look at the exponential functions 2n, 3n and 4n in Fig-
ure 21.2, which appear as straight lines in this compressed grid. (Compare them
to Figure 20.2, which plots the same functions.) What is striking is how astronom-
ically huge they grow, especially compared to the power functions, which “flatten
out.”

n

y y = n! y = 4n y = 3n y = 2n

y = log2(n)

y = n log2(n)

y = n1

y = n2

y = n3

y = n4

y = n5

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

y = 1

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 21.2 Some functions plotted on a grid where each tick on the y-axis is twice its value on the
previous tick. (So the y-axis is a log2 scale.) Note that any power function na grows vastly slower
than any exponential function bn. But y = n! eventually overtakes any exponential function.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 470

470 Discrete Math Elements

With this picture as a guide, our next task is to compare power and exponential
functions in terms of Definition 21.1.

But before we do so, let’s pause to lay out a road map of what we are about to
do. Let’s use the notation f(x) � g(x) to mean f(x) is O

�
g(x)

�
. By f(x) � g(x),

we mean f(x) is O
�
g(x)

�
but g(x) is not O

�
f(x)

�
. Then Proposition 21.1 implies

1 � n � n2 � n3 � n4 � · · · .
In the remainder of this section we are going to show

1 � log
2
(n) � n � n2 � n3 � n4 � · · · � 2n � 3n � 4n � 5n � . . . (21.1)

This is the content of the section’s remaining propositions.
But first, a quick word about the constant function 1 that appears on the left

of the chain (21.1), above. This constant function y = f(n) = 1 is graphed in
Figure 21.2. In general, a constant function has the form f(n) = c, where c is some
constant number. Whatever n is plugged into the function, the output is c. It is
immediate that any constant function c is O(1), because c  A · 1 for A = c. Also
c is O(n), because clearly c  A · n for all n > N = c

A .
Next we are going to compare power functions with exponential functions. First

we ponder exponential functions, those at the right end of chain (21.1). Our next
proposition implies 2n � 3n � 4n � 5n � 6n, etc.

Proposition 21.3. If 1 < a < b, then the exponential function an is O
�
bn
�
. But

the exponential function bn is not O
�
an
�
.

Proof. Suppose 1 < a < b. It is immediate that an is O
�
bn
�
, because then an 

1 · bn for all n > 0, and Definition 21.1 applies.
Next we prove bn not O

�
an
�
. For the sake of contradiction, say bn is O

�
an
�
.

Then Definition 21.1 says there are positive numbers A and N for which bn  Aan

for all n > N . (We have omitted the absolute values because everything is sight is
already positive.) From this, bn

an  A, which means
�
b
a

�n
< A for all n > N . This

is a contradiction because a < b forces b
a > 1, so the exponential function

�
b
a

�n
is

bigger than A for all su�ciently large n.

Our next result (Proposition 21.4) will compare power functions nd to exponen-
tial functions bn. It asserts that any power function nd is O

�
bn
�
if b > 1. For exam-

ple, consider the power function n1000, compared to the exponential function 2n. For
small values of n we have n1000 > 2n. For example, 101000 = 10, 000 > 1024 = 210.
But you may have a sense that, because 2n doubles each time n increases by 1,
then for large enough n, we have n1000 < 2n. If you are comfortable with your in-
tuition and knowledge of how an exponential function eventually surpasses a power
function, then you may want to skip the proof of Proposition 21.4. (But do read
the statement of the proposition.) The proof given here is somewhat involved be-
cause it avoids calculus. You are invited to write your own, simpler, proof using
Proposition 21.2 (Exercise 13).

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 471

Complexity of Algorithms 471

Proposition 21.4. If d � 1 and b > 1, then the power function nd is O
�
bn
�
, but

the exponential function bn is not O
�
nd
�
.

Proof. First we will show nd is O
�
bn
�
. To begin, note that if n > 1, then n

n�1
> 1,

because the numerator is greater than the denominator. But as n grows bigger,
n

n�1
gets closer and closer to 1. The reason is that n

n�1
= 1 + 1

n�1
(check this),

and the fraction 1

n�1
approaches 0 as n gets bigger. (If you have had some calculus

then you know to express this phenomenon as lim
n!1

n
n�1

= 1. However, we will use

no calculus here.) Because b > 1, the number d
p
b is greater than 1, so there is some

N > 0 for which n > N implies n
n�1

< d
p
b. This means

✓
n

n� 1

◆d

< b for n > N . (21.2)

Now let A = Nd. We claim that nd  Abn when n > N . Indeed, if n > N , then

nd < (N + n)d (because n < N+n)

=

✓
N

N

◆d✓N+1

N+1

◆d✓N+2

N+2

◆d

· · ·
✓
N+n�1

N+n�1

◆d

(N+n)d (multiply by 1)

= Nd

✓
N+1

N

◆d✓N+2

N+1

◆d✓N+3

N+2

◆d

· · ·
✓

N+n

N+n�1

◆d
(move denominators
one place to right)

< Nd b · b · b · b · · · b| {z }
n times

(by Equation (21.2))

= Abn. (because A = Nd)

We’ve established nd  Abn for n > N , which proves nd is O
�
bn
�
.

Next we show that bn is not O
�
nd
�
. Suppose for the sake of contradiction that

bn is O
�
nd
�
. Then there are positive numbers A and N for which

bn  And when n > N. (21.3)

Because 1 < b, there is a number a for which 1 < a < b. By the first part of the
proof, we know nd is O

�
an
�
, so there exist positive A0 and N 0 for which

nd  A0an when n > N 0. (21.4)

Combining inequalities (21.3) and (21.4) yields bn  And  AA0an. Dividing
this by an gives bn

an  AA0, or
�
b
a

�n  AA0, if n is bigger than both N and N 0.
This is a contradiction, as the fact 1 < a < b ensures b

a > 1, so the exponential
function

�
b
a

�n
actually exceeds AA0 for all su�ciently large n.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 472

472 Discrete Math Elements

What about logarithm functions? For fixed bases a and b, the change of base
formula (Fact 20.6 on page 460) says

loga(n)

logb(n)
=

log10(n)
log10(a)

log10(n)
log10(b)

=
log

10
(b)

log
10
(a)

.

Thus loga(n) =
log10(b)
log10(a)

logb(n) = A logb(n) for a fixed constant A = log10(b)
log10(a)

. (Let’s

assume a, b > 1, so that A is positive.) This implies loga(n) is O
�
logb(n)

�
regardless

of the bases a and b. In other words, loga(n) � logb(n) and logb(n) � loga(n), for
a and b. Let’s adopt the notation f(n) ' g(n) to mean that both f(n) � g(n) and
g(n) � f(n) hold, in which case we say that f(n) and g(n) have the same order.

Then we have, for instance,

log
2
(n) ' log

3
(n) ' log

4
(n) ' log

5
(n) '

Since a logarithm’s base has no bearing on its order, we will finish our investi-
gation using log

2
.

Proposition 21.5. The function log
2
(n) is O(n), but n is not O

�
log

2
(n)

�
.

Also, the constant function 1 is O
�
log

2
(n)

�
, but log

2
(n) is not O(1).

Proof. Observe that n < 2n holds for all positive integers n. (This should be
obvious, or you can prove it with induction.) Therefore, for all n > 2 we have

2 < n < 2n

log
2
(2) < log

2
(n) < log

2
(2n)

1 < log
2
(n) < n.

(In taking logs in the second step here, we used the fact that log
2
(n) is an increasing

function, that is, x < y implies log
2
(x) < log

2
(y). Thus taking log

2
did not reverse

any <.) Note that 1 < log
2
(n) for n > 2 means 1 is O

�
log

2
(n)

�
, and log

2
(n) < n

means log
2
(n) is O(n).

But n is not O
�
log

2
(n)

�
because if it were, there would be a positive A for which

n  A log
2
(n) for all n > N , for some N . From this we would get 2n  2A log2(n)

for all n > N . This becomes 2n 
�
2log2(n)

�A
= nA for all n > N , meaning 2n is

O
�
nA), which contradicts Proposition 21.4.
To see that log

2
(n) is not O(1), suppose it were. Then log

2
(n)  A · 1 for all

su�ciently large n. But this is a contradiction, for as long as n > 4A, we have
log

2
(n) > log

2
(4A) = A log

2
(4) = 2A > A.

The previous four propositions confirm the chain (21.1) on page 470, repeated
here for emphasis:

1 � log
2
(n) � n � n2 � n3 � n4 � · · · � 2n � 3n � 4n � 5n � · · · � n! � nn.

(Actually, two new entries n! and nn have been slipped in on the right. Regarding
them, see the exercises 6 and 7 below.)

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 473

Complexity of Algorithms 473

Regarding the functions f(n) that appear on this list, if the worst-case perfor-

mance of an algorithm is O
�
f(n)

⌘
, then we would want f(n) to be as far to the left

as possible, for e�ciency improves the further left we can go. An algorithm whose
worst-case performance was f(n) = n! or f(n) = nn would be a very bad algorithm,
usable only for small values of n.

Exercises for Section 21.1

1. Show that f(n) = 3 + n+ 2n is O
�
2n
�
.

2. Show that f(n) = 2n4 + n2 � n� 3 is O
�
n4
�
.

3. Show that f(n) = 25 + 8n+ log2(n) is O(n).

4. Show that f(n) = log2(n) · n3 is O(n4).

5. Show that n log2(n) is O
�
n2
�
, but n2 is not O

�
n log2(n)

�
. (See Figure 21.2.)

6. Show that the function f(n) = n! is O
�
nn
�
, but nn is not O(n!).

7. Show that the function f(n) = 2n is O(n!), but n! is not O
�
2n
�
. (See Figure 21.2.)

8. Show that the function f(n) =
�

n
bn/2c

�
is O(2n).

9. Let Fn be the nth Fibonacci number. Show that Fn is O
⇣⇣

1+
p

5
2

⌘n⌘
, and that

⇣
1+

p
5

2

⌘n
is O(Fn).

10. Two di↵erent algorithms, Algorithm 1 and Algorithm 2, accomplish the same
task. Algorithm 1 has worst-case performance f(n) and Algorithm 2 has worst-
case performance g(n) (where n is the input size). Say these algorithms run on
two di↵erent computers: Computer 1 and Computer 2, respectively.

(a) Suppose f(n) is O
�
g(n)

�
. Show that there exists a number B such that

if Computer 1 is B times faster than Computer 2, then Algorithm 1 will
always finish before Algorithm 2 when each is run on the same input.

(b) Suppose f(n) is not O
�
g(n)

�
. Show that no matter how fast Computer 1

is, there are some inputs for which Algorithm 1 is slower than Algorithm 2.

11. Prove the first part of Prop. 21.2: If lim
n!1

f(n)
g(n)

= L, then f(n) is O
�
g(n)

�
.

12. Prove the last part of Prop. 21.2: If lim
n!1

f(n)
g(n)

= ±1, then f(n) is not O
�
g(n)

�
.

13. Use Proposition 21.2 to prove Proposition 21.4.

14. Use Proposition 21.2 to prove Proposition 21.5.

15. Show that the relation � (defined on page 470) is a transitive relation on the
set of all real-valued functions on (0,1). That is, show that f(n) � g(n) and
g(n) � h(n) imples f(n) � h(n).

16. On page 472 we defined f(n) ' g(n) if both f(n) is O
�
g(n)) and g(n) is O

�
h(n)).

Prove that ' is an equivalence relation on the real-valued functions on (0,1).

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 474

474 Discrete Math Elements

21.2 Big-⌦ and Big-⇥

Big-O notation is very useful for measuring and comparing the e�ciencies of
algorithms and programs. For example, suppose you have written a program,
and have determined that its worst-case behavior is modeled by the function
f(n) = 18 + 12n2 + 3n3 (meaning that the program takes f(n) or fewer steps
when processing an input of size n.) Because f(n) is O

�
n3
�
, you can gloss over the

details of f(n) and just say that you have an O
�
n3
�
program.

Now imagine that someone else writes another program that solves the same
problem as yours. Because of minor di↵erences in coding, maybe their worst-case
behavior is given by h(n) = 16 + 5n2 + 5n3. Both programs are O

�
n3
�
, and hence

are considered equally e�cient.
But if someone down the hall has an O

�
n2
�
program, then theirs is better.

Saying that f(n) is O
�
g(n)

�
means that f compares favorably to g in the sense

that |f(n)|  A·|g(n)| for large n. But the person down the hall wants to convince
you that your program compares unfavorably to theirs. A slightly di↵erent notation
called big-⌦ (pronounced “big-omega”) is used for this type of discussion. Below
we repeat the definition of big-O to highlight the parallels between it and big-⌦.

Definition 21.2. Suppose f and g are functions of n.

• f(n) is O
�
g(n)

�
if 9 numbers A and N such that |f(n)|  A·|g(n)| when n > N .

• f(n) is ⌦
�
g(n)

�
if 9 numbers A and N such that |f(n)| � A·|g(n)| when n > N .

• f(n) is ⇥
�
g(n)

�
if f(n) is O

�
g(n)

�
and f(n) is ⌦

�
g(n)

�
.

Notice that |f(n)| � A · |g(n)| implies |g(n)|  1

A · |f(n)|, so saying f(n) is
⌦
�
g(n)

�
means exactly the same thing as saying g(n) is O

�
f(n)

�
. The definition

is phrased the way it is because in practice f(n) is usually a complicated function
while g(n) is a simple reference function, like g(n) = n3 or g(n) = n log

2
(n), etc.

Say f(n) gives the worst-case performance for an algorithm. If f(n) is O
�
g(n)

�
,

we say the algorithm is O
�
g(n)

�
. If f(n) is ⌦

�
g(n)

�
, we say the algorithm is ⌦

�
g(n)

�
.

Just as the statement “f(n) is O
�
g(n)

�
” means “f(n) is as good as or better

than g(n),” the statement “f(n) is ⌦
�
g(n)

�
” means “f(n) is as bad as or worse

than g(n)” in the sense that f(n) grows beyond some constant multiple of g(n) (or
is at least equal a constant multiple of g(n) for su�ciently large n). If we happen
to know that a particular algorithm is, say, ⌦(n5), then it is reasonable to try to
devise a di↵erent algorithm (that does the same thing) that is O(n4), or better.

Definition 21.2 also defines the notion of ⇥
�
g(n)

�
. f(n) is ⇥

�
g(n)

�
if it is both

O
�
g(n)

�
and ⌦

�
g(n)

�
. For example, on page 472 we saw that for any a, b > 1.

loga(n) is O
�
logb(n)

�
and logb(n) is O

�
loga(n)

�
, and hence loga(n) is ⇥

�
logb(n)

�
.

If f(n) is ⇥
�
g(n)

�
, we say that f(n) is of order g(n). So, for example, logarithms

to di↵erent bases are of the same order.
For the remainder of this text we will phrase our discussions in terms of big-O,

but you may encounter big-⌦ and big-⇥ in future reading.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 475

Complexity of Algorithms 475

21.3 Polynomial Algorithms

As noted in the previous section, Big-O notation is useful for measuring the e�ciency
of algorithms. If an algorithm’s worst-case performance is f(n) steps to process an
input of size n, then, f(n) can be fairly complex. But usually a simple g(n) (such as
a power or exponential function) can be found such that f(n) is O

�
g(n)

�
. Then the

simple function g(n) is meaningful generic measure of the algorithm’s complexity.
In such a case we say that the algorithm is O

�
g(n)

�
.

The following propositions (and corollaries) are useful for transforming a com-
plicated f(n) to a simpler g(n) for which f(n) is O

�
g(n)

�
.

Proposition 21.6. If f(n) = f1(n) ± f2(n) ± · · · ± fk(n) and each fi(n) is
O
�
g(n)

�
, then f(n) is O

�
g(n)

�
.

Proof. (Direct) Say each fi(n) is O
�
g(n)

�
. This means that there exist positive

numbers A1, A2, . . . , Ak and N1, N2, . . . , Nk, such that, for each index i, the in-
equality |fi(n)|  Ai|g(n)| holds for all n � Ni. Put A = A1 + A2 + · · ·+ Ak. Let
N = max

�
N1, N2, . . . , Nk

, that is, N is the largest of the Ni. If n > N , then

|f(n)| =
��f1(n)± f2(n)± · · · ± fk(n)

��


��f1(n)

��+
��f2(n)

��+ · · ·+
��fk(n)

�� (triangle inequality)

 A1

��g(n)
��+A2

��g(n)
��+ · · ·+Ak

��g(n)
��


�
A1 +A2 + · · ·+An

�
·
��g(n)

��

 A ·
��g(n)

��.

By Definition 21.1, f(n) is O
�
g(n)

�
.

Proposition 21.7. Suppose f1(n) is O
�
g1(n)

�
and f2(n) is O

�
g2(n)

�
. Then the

product f1(n)f2(n) is O
�
g1(n)g2(n)

�
.

Proof. (Direct) Suppose f1(n) is O
�
g1(n)

�
and f2(n) is O

�
g2(n)

�
. Definition 21.1

says there exist positive numbers A1 and N1

��f1(n)
��  A1 ·

��g1(n)
�� for all n � N1,

and positive numbers A2 and N2, such that
��f2(n)

��  A2 ·
��g2(n)

�� for all n � N2.
Let A = A1 ·A2 and let N = max

�
N1, N2

. Then if n > N , the following holds:

��f1(n)f2(n)
�� =

��f1(n)
�� ·
��f2(n)

��

 A1 ·
��g1(n)

�� ·A2 ·
��g1(n)

��

 A1 ·A2 ·
��g1(n)g2(n)

��

 A ·
��g1(n)g2(n)

��.

By Definition 21.1, f1(n)f2(n) is O
�
g1(n)g2(n)

�
.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 476

476 Discrete Math Elements

Example 21.2. Show that the function f(n) = 5n3 � n2 log
2
(n) + 8 is O

�
n3).

Solution: Our strategy is to show that each functions 5n3, n2 log
2
(n) and 8 is

O
�
n3
�
, for then Proposition 21.6 implies 5n3 � n2 log

2
(n) + 8 is O

�
n3).

First, the constant function 5 is O(1), and n3 is O
�
n3
�
, so Proposition 21.7 says

5n3 is O
�
n3
�
. Second, log

2
(n) is O(n) by Proposition 21.5, so by Proposition 21.7,

n2 log
2
(n) is O

�
n2n

�
= O

�
n3
�
. Finally, the constant function 8 is clearly O

�
n3
�
.

Our strategy is successful, so f(n) = 5n3 � n2 log
2
(n) + 8 is O

�
n3).

The methods used in this example also work to establish two simple corollaries.

Corollary 21.1. If f(n) is O
�
g(n)

�
, and c is a constant, then cf(n) is O

�
g(n)

�
.

Proof. Because c is O(1) and f(n) is O
�
g(n)

�
, Proposition 21.7 implies that cf(n)

is O
�
1 · g(n)

�
= O

�
g(n)

�
.

Corollary 21.2. Any polynomial f(n) = a0 + a1n+ a2n2 + · · ·+ adxd of degree
d is O

�
nd
�
.

Proof. By Proposition 21.1, the power function ni is O
�
nd
�
when i  d. Thus

each term aini of f(n) is O
�
nd
�
. Therefore f(n) is O

�
nd
�
, by Proposition 21.6.

Now we arrive at two significant ideas. An algorithm is called a polynomial-
time algorithm if its worst-case performance for input size n is f(n), where f(n)
is O

�
g(n)

�
, for some polynomial g(n). (Equivalently, an algorithm is a polynomial-

time algorithm if f(n) is O
�
nd
�
, for some power function nd.) Often a polynomial-

time algorithm is simply called a polynomial algorithm.
An algorithm is called an exponential-time algorithm (or just an exponen-

tial algorithm) if it is not a polynomial algorithm, and its worst-case performance
for input size n is f(n), where f(n) is O

�
bn
�
(for b > 1).

Figure 21.2 suggests that polynomial algorithms are much quicker than expo-
nential algorithms. In fact, computer scientists regard exponential-time algorithms
as little better than useless. For example, if an algorithm’s worst-case performance
is f(n) = 2n, then even with a modest input size of n = 60, the number 260 of steps
needed is so great that even on the fastest computer it could take over 3 centuries
to finish. And even if we got a computer that was twice as fast, and it only needed
1.5 centuries to finish, consider that all we’d have to do is give it an input of size
61, and we are back to 3 centuries!

By contrast, a polynomial algorithm finishes in a reasonable amount of time,
even if the input is large. For this reason, it is important to analyze the time-
complexity of the algorithms we use or write. Always aim for polynomial-time.

The next two sections examine two case studies.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 477

Complexity of Algorithms 477

21.4 Case Study: Sequential Search versus Binary Search

Let’s use our new knowledge to compare the time-complexity of sequential search
(Algorithm 9 on page 224) with that of binary search (Algorithm 10 on page 226).
These two di↵erent algorithms accomplish the same thing: Determine whether a
certain number z appears as an entry of a length-n list of numbers that are in
numeric order.

Recall that sequential search merely traverses the list from left to right, stopping
only when it encounters an entry equal to z, or reaches the end of the list without
finding z. In the worst case, it might have visit all n entries; indeed, on page 224 we
computed its worst-case performance as f(n) = 3+4n steps. As this is a polynomial
of degree 1, Corollary 21.2 says f(n) is O(n). In our new parlance, the sequential
search algorithm is an O(n) polynomial algorithm.

The binary search algorithm (page 226) is more complex, but faster than se-
quential search. Recall that it jumps to the middle of the list, compares z to the
middle entry, and then ignores either the left- or right-half of the list, depending
on whether the middle entry is less than or greater than z. Then it repeats this
procedure on the new half-sized list, etc., until it encounters z or finds that it is not
in the list. At the end of Section 8.7 we found that its worst-case performance is
5 + 5d log

2
(n) e steps. Although there is nothing problematic about rounding the

logarithm up here, it is not quite a perfect fit for Proposition 21.5. To remedy this,
note that log

2
(n)  d log

2
(n) e  log

2
(n) + 1, so we are safe in saying that the

algorithm takes no more than f(n) = 4 + 5
�
log

2
(n) + 1

�
= 9 + 5 log

2
(n) steps.

Then f(n) = 5 · 1 + 2 · log
2
(n). Here the functions 1 and log

2
(n) are both

O
�
log

2
(n)

�
, by Proposition 21.5, so Proposition 21.6 with Corollary 21.1 imply

that f(n) is O
�
log

2
(n)

�
. Consequently, the binary search algorithm is O

�
log

2
(n)

�
.

This is better than the O(n) sequential search algorithm, as log
2
(n) � n.

Here is a significant point. Even though binary search is O
�
log

2
(n)

�
, and log

2
(n)

is not a polynomial, binary search is nonetheless a polynomial algorithm. The reason
for this is that O

�
log

2
(n)

�
is O(n), by Proposition 21.5 (and n is a polynomial). So

technically, when we say that an algorithm is a polynomial algorithm, we really mean
that it is no worse than polynomial. Binary search is better than polynomial, but it
gets grouped with polynomial algorithms because it’s not worse than polynomial.

But although we may classify binary search as a polynomial algorithm, we still
say that its time-complexity is O

�
log

2
(n)

�
, because this is an order of magnitude

better than O(n). Think of it this way: Recall that Proposition 21.5 also states that
n is not O

�
log

2
(n)

�
. This means that there is no number A for which n < A log

2
(n)

for all n. No matter how big A is, n > A log
2
(n) if n is large enough. Consequently,

even if sequential search (which is O(n)) runs on an arbitrarily fast computer, and
binary search (which is O(log

2
(n))) runs on a very slow computer, then sequential

search will still be slower than binary search for all but finitely many inputs.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 478

478 Discrete Math Elements

21.5 Case Study: Bubble Sort versus Merge Sort

In Section 8.3, we devised the algorithm Bubble Sort (Algorithm 6, page 212)
that sorts a list of numbers. (So, for input X = (5, 3, 5, 7, 4), the output is X =
(3, 4, 5, 5, 7), etc.) For convenience, the code is repeated here. (You may want to
quickly review the discussion and explanation preceding page 212.)

Algorithm 6: Bubble Sort

Input: A list X = (x1, x2, . . . , xn) of numbers
Output: The list sorted into numeric order
begin

for k := n�1 downto 1 do
for i := 1 to k do

if xi > xi+1 then
temp := xi . temporarily holds value of xi

xi := xi+1

xi+1 := temp now xi and xi+1 are swapped
end

end
end
output X . now X is sorted

end

Let’s analyze Bubble Sort’s performance. The if-statement inside the nested for-
loops executes once for each pair (i, k) with 1  i  k  n� 1. In other words, as
many times as there are pairs (i, k) satisfying 0  i� 1  k� 1  n� 2. How many
such pairs are there? We have seen this kind of problem before. (See Example ??.)
It can be modeled with a length-n list of 2 bars and n�2 stars, where there are i�1
stars to the left of the first bar, and k�1 stars to the left of the second bar.

n�2 stars, and 2 barsz }| {

| {z }
i�1 stars

| {z }
k�1 stars

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤| |

So if n = 8, then ⇤⇤⇤|⇤ |⇤⇤ means (i, k) = (4, 5), and ⇤⇤⇤||⇤⇤⇤ means (i, k) = (4, 4).
Also | ⇤ ⇤ ⇤ ⇤ ⇤ ⇤| means (i, k) = (1, 7), and || ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ is (i, k) = (1, 1). The number
of such lists equals the number of ways to choose 2 out of n spots for the bars,
which is

�n
2

�
= n(n�1)

2
= 1

2
n2 � 1

2
n. So the if-statement executes 1

2
n2 � 1

2
n times,

and each time it runs at most 4 steps. So in the worst-case, the loop executes
4
�
1

2
n2 � 1

2
n
�
= 2n2 + 2n steps. Including its final output command, Bubble Sort

does no more than f(n) = 2n2 � 2n+ 1 steps. Thus f(n) is order O
�
n2
�
.

Conclusion: Bubble Sort is an O
�
n2
�
polynomial algorithm.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 479

Complexity of Algorithms 479

Now, O
�
n2
�
is not bad. But there is another sort algorithm that is better.

It is called merge sort. It is also polynomial, but its worst-case performance is
O
�
n log

2
(n)

�
. (Note O

�
n log

2
(n)

�
is better than O

�
n2
�
by Exercise 21.5)

A big piece of the merge sort algorithm involves “merging” two sorted lists Y
and Z into a single sorted list X. The idea is to start with X = (), then continually
compare the left-most entries of Y and Z, always removing the smaller one and
appending it to the end of X, until Y and Z are used up.

To illustrate, say Y = (2, 2, 4, 7, 9) and Z = (3, 5, 6, 8). Step 1 compares the first
entries of both Y and Z. The first entry 2 of Y is smaller than the first entry 3 of
Z. So remove 2 from Y and make it the first entry of X, so X = (2). Now Y is one
entry shorter than it was previously.

Step 2 compares the first entries of Y and Z. Again, the first entry 2 of Y is
smaller than the first entry 3 of Z. So remove 2 from Y and make it the next entry
of X. Now X = (2, 2) and Y has been shortened once again.

For step 3, compare the first entries of both Y and Z. This time the first entry
3 of Z is smaller than the first entry 4 of Y . So remove 3 from Z and make it the
next entry of X. Now Z has been shortened.

Repeat until all entries of Y and Z have been removed and put onto X, as shown
below. In the end, X is a sorted merging of Y and Z.

0

Y

X

Z2 2 4 7 9 3 5 6 8
5

Y

X

Z7 9 5 6 8

2 2 3 4 5

1

Y

X

Z2

2

2 4 7 9 3 5 6 8
6

Y

X

Z7 9 6 8

2 2 3 4 5 6

2

Y

X

Z2 4 7 9 3 5 6 8

2 2

7

Y

X

Z7 9 8

2 2 3 4 5 6 7

3

Y

X

Z4 7 9 3 5 6 8

2 2 3

8

Y

X

Z9 8

2 2 3 4 5 6 7 8

4

Y

X

Z4 7 9 5 6 8

2 2 3 4

9

Y

X

Z9

2 2 3 4 5 6 7 8 9

Notice that after step 8 all entries of Z have been removed. At this point we
attach whatever entries are left on Y to the end of X. If at some point all entries
of Y had been removed, then we’d append the remaining entries of Z to X.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 480

480 Discrete Math Elements

Here is pseudocode for merging sorted lists Y and Z into a sorted list X.
It is a procedure called Merge whose input is the two lists Y and Z, and whose
output is the merged list X. Rather than actually removing entries from Y and Z,
it maintains two indices i and j that indicate the current “first” entries of Y and
Z, respectively. Initially i = j = 1. Then every time an entry of Y is “removed,” i
increases by 1. Every time an entry of Z is “removed,” j increases by 1.

Procedure Merge(Y, Z). Y and Z are sorted lists to be merged

begin
i := 1 index for list Y = (y1, . . . , y`) (initially yi = y1)
j := 1 index for list Z = (z1, . . . , zm) (initially zj = z1)
k := 0 . index for merged list X
X := (0, 0, . . . , 0) initialize list X = (x1, . . . , x`+m) (to be filled in)
while (i  `) _ (j  m) do

k := k + 1 . advance to fresh entry of X
if (i  `) ^ (j  m) then

if yi  zj then
xk := yi .xk gets yi because yi  zj
i := i+ 1 . move to next entry of Y

else
xk := zj . xk gets zj because zj < yi
j := j + 1 .move to next entry of Z

end

else
if i > ` then

xk := zj
j := j + 1

�
. if reached, Y is used up;

use entries of Z

else
xk := yi
i := i+ 1

�
. if reached, Z is used up;

use entries of Y
end

end

end
return X

end

Let’s count steps. The procedure begins with four assignments, and ends with
return X. So far that’s five steps outside the while-loop. The while-loop makes
`+m iterations. (Recall ` is Y ’s length and m is Z’s length.) Each iteration makes
6 steps (3 boolean evaluations and 3 assignments), so in all the while-loop executes
6(`+m) steps.

In summary, if Y has ` entries and Z has m entries, then Merge merges them in
5 + 6(`+m) steps, so it is O(`+m).

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 481

Complexity of Algorithms 481

Now that we can merge two sorted lists into one sorted list with Merge, we can
explain MergeSort, an algorithm that sorts a length-n list in O

�
n log

2
(n)

�
time.

For simplicity, first consider a list whose length is a power of 2, like n = 23 = 8.
Imagine that its entries are written on movable cards. Begin by splitting the list
in half, into two smaller lists. Then split these half-lists in half, and continue until
you can’t split any further.

T
re
e
h
ei
g
h
t:

lo
g
2
(n

)
=

lo
g
2
(8
)
=

3

list length: n = 8

(input list)

split

split split

split split split split

7 3 2 9 1 4 7 2

7 3 2 9 1 4 7 2

7 3 2 9 1 4 7 2

7 3 2 9 1 4 7 2

Now we have 8 lists of length 1, and each one is already sorted by default! Next
merge these with Merge in the reverse order in which they were split.

T
re
e
h
ei
g
h
t:

lo
g
2
(n

)
=

lo
g
2
(8
)
=

3

(output list)

merge

merge merge

merge merge merge merge

7 3 2 9 1 4 7 2

3 7 2 9 1 4 2 7

2 3 7 9 1 2 4 7

1 2 2 3 4 7 7 9

This is our sorted list. We will shortly write the MergeSort procedure to follow
these steps. But first, let’s count the number of steps (card movements) made in
sorting the above example list of length n = 2k. The first list-splitting phase made
an inverted tree of height log

2
(n) = log

2
(2k) = k (in our example, k = 3). At

each level of the tree we had to move all n cards, so the total number of moves in
the “splitting” phase is n log

2
(n). It the second “merging” phase we had to make

another n log
2
(n) moves. Summary: You can sort a list of length n = 2k cards with

2n log
2
(n) card movements.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 482

482 Discrete Math Elements

The previous page’s example was simplified by the assumption that the list’s
length was a power of 2. If this is not the case, then not every splitting operation
will result in two equal-sized half-lists. You may have to split into two lists of
lengths dn

2
e and bn

2
c, respectively. This is illustrated below with a list of length 9.

T
re
e
h
ei
gh

t:
dl
og

2
(n

)e
=

dl
og

2
(9
)e

=
4

list length: n = 9

(input list)

split

split split

split split split split

split

8 7 3 2 9 1 4 7 2

8 7 3 2 9 1 4 7 2

8 7 3 2 9 1 4 7 2

8 7 3 2 9 1 4 7 2

8 7

We had to go an extra level down to fully split our list into length-1 lists. The
tree height increased to dlog

2
(n)e = dlog

2
(9)e = 4. The total number of card

movements in this splitting phase is never more than n card moves per level, that
is, ndlog

2
(n)e. Reversing this process—but merging instead of splitting—gives our

final sorted list in just 2ndlog
2
(n)e card movements.

T
re
e
h
ei
gh

t:
dl
og

2
(n

)e
=

dl
og

2
(9
)e

=
4

(output list)

merge

merge
merge

merge merge merge
merge

merge

1 2 2 3 4 7 7 8 9

2 3 7 8 9 1 2 4 7

3 7 8 2 9 1 4 2 7

7 8 3 2 9 1 4 7 2

8 7

Summary: You can sort n cards with 2ndlog
2
(n)e or fewer card moves.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 483

Complexity of Algorithms 483

Now we implement this idea and actually write MergeSort, a procedure that
takes an input list X of numbers and returns X sorted into numeric order. That
is, MergeSort(X) is a rearrangement of X into numeric order.

MergeSort uses the procedure Merge, described on page 480. But it is
also recursive, calling itself. If the input list X happens to have length 0
or 1, then X is automatically already sorted, so MergeSort(X) just returns
X. Otherwise MergeSort splits X = (x1, x2, . . . , xn) into two lists Y =
(x1, x2, . . . , xdn

2 e) and Z = (xdn
2 e+1, . . . , xn�1, xn) that are each no longer than

half the length of X. Then it returns Merge(MergeSort(Y), MergeSort(Z)).

Procedure MergeSort(X). X = (x1, x2, . . . , xn) is list to be sorted

1 begin
2 if n  1 then
3 return XX has length 1 or 0, so it is already sorted
4 else
5 Y := (x1, x2, . . . , xdn

2 e) .Y is half of X

6 Z := (xdn
2 e+1, . . . , xn�1, xn) .Z is other half

7 return Merge(MergeSort(Y), MergeSort(Z))

8 end

9 end

Proposition 21.8. For any list X of numbers, MergeSort(X) really does return
X sorted into numeric order.

Proof. We use strong induction on n to prove that MergeSort does indeed sort its
input correctly. For the basis case, if n = 0 or n = 1, then its pseudocode reveals
that MergeSort(X) returns X, unchanged, in line 3. This is the correct result,
because as a list of length 0 or 1, X is already sorted.

For the inductive step we need to show that if k > 1 and MergeSort correctly
sorts any list of length shorter than k, then MergeSort correctly sorts any list of
length k.

We use direct proof. Suppose k > 1 and MergeSort correctly sorts any list
of length shorter than k. Let X be a list of length k. Note that in this case
MergeSort(X) splits X into two shorter lists Y and Z (lines 5 and 6), and then re-
turns Merge(MergeSort(Y), MergeSort(Z)) in line 7. Now, Y and Z each has length
shorter than k, so by the induction hypothesis, MergeSort(Y) and MergeSort(Z)
are correct sortiings of the two halves Y and Z of X. Thus the returned list
Merge(MergeSort(Y), MergeSort(Z)) is a correct sorting of X.

Next we prove that MergeSort is O
�
n log

2
(n)

�
. (You may already believe this,

based on the diagrams from several pages back.) The proof is a good illustration of
strong induction and logarithm properties.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 484

484 Discrete Math Elements

Proposition 21.9. MergeSort(X) is O
�
n log

2
(n)

�
, where X has length n.

Proof. Our strategy is to show that if X has length n, then MergeSort(X) sorts X
in no more than f(n) = 2 + 12n log

2
(n) steps. This will imply that MergeSort(X)

is O
�
n log

2
(n)

�
, because if n > 1, then 1  n log

2
(n), so

f(n) = 2 + 12n log
2
(n)  2n log

2
(n) + 12n log

2
(n) = 14n log

2
(n),

and therefore |f(n)|  A · |n log
2
(n)| for A = 14 and n � N = 1.

So to compete the proof, we now prove that MergeSort(X) sorts X in no more
than f(n) = 2 + 12n log

2
(n) steps. The proof is by strong induction on n.

For the basis step, if X has length n = 1, then the pseudocode for MergeSort(X)
shows that it returns X (already sorted) in 2 steps. As f(1) = 2 + 12 log

2
(1) =

2+12 ·0 = 2, we see that indeed MergeSort(X) sorts X in no more than f(1) steps.
Now for the inductive step. Let n > 2. Suppose that if X has length k < n,

then MergeSort(X) takes no more than f(k) steps.
Now assume X has length n. We must show that MergeSort(X) takes no more

than f(n) steps. Let’s count steps for MergeSort(X). The first step is the boolean
evaluation of (n  1) in line 2. Then the procedure goes straight to lines 5 and 6,
and creates lists Y and Z. Note that Y has length dn

2
e and Z has length bn

2
c, so It

takes dn
2
e+ bn

2
c = n steps to fill in these new lists (one assignment per entry). So

by line 6, the procedure has done 1 + n steps.
Next comes line 7, which returns Merge(MergeSort(Y), MergeSort(Z)). A lot

happens here, and we need to track it all. First MergeSort(Y) and MergeSort(Z)
are run, then Merge is run on their output, and the result is returned. By
the inductive hypothesis, MergeSort(Y) takes no more than f

�
dn
2
e
�
steps, while

MergeSort(Z) takes no more than f
�
bn
2
c
�
steps. By the remark at the bottom

of page 480), it then takes at most 5 + 6
�
dn
2
e+ bn

2
c
�
= 5 + 6n steps for merge

to merge the two sorted lists. Lastly, the result is returned. So line 7 executes
f
�
dn
2
e
�
+ f

�
bn
2
c
�
+ 5 + 6n+ 1 steps

Adding this to the steps undertaken before line 7, we see that MergeSort(X)
makes no more than 7 + 7n+ f

�
dn
2
e
�
+ f

�
bn
2
c
�
steps. We are aiming to show that

this is no more than f(n) steps. There are two cases.
Case 1. Suppose n is even. Then

⌃
n
2

⌥
=
⌅
n
2

⇧
= n

2
, so

7+7n+f
⇣ln

2

m⌘
+f

⇣jn
2

k⌘
= 7 + 7n+ 2f

⇣n
2

⌘

= 7 + 7n+ 2
⇣
2 + 12

n

2
log

2

⇣n
2

⌘⌘
(definition of f)

= 11 + 7n+ 12n
�
log

2
(n)� log

2
(2)

�
(log property)

=
�
2 + 12n log

2
(n)

�
+ (9� 5n) (log

2
(2) = 1)

= f(n) + (9� 5n) (f(n)=2+12n log
2
(n))

 f(n). (because 9� 5n  0)

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 485

Complexity of Algorithms 485

Thus of X has even length n, then MergeSort(X) sorts it in f(n) or fewer steps.

Case 2. Suppose n is odd. Then
⌃
n
2

⌥
= n+1

2
and

⌅
n
2

⇧
= n�1

2
, so MergeSort(X)

makes no more than

7+7n+f
⇣ln

2

m⌘
+f

⇣jn
2

k⌘
= 7 + 7n+ f

✓
n+ 1

2

◆
+ f

✓
n� 1

2

◆

steps. We need to show

7 + 7n+ f

✓
n+ 1

2

◆
+ f

✓
n� 1

2

◆
 f(n).

This is somewhat more complicated than the previous case, and the simplifications
are not as nice. An alternate approach is to show that the function

g(n) = f(n)�
✓
7 + 7n+ f

✓
n+ 1

2

◆
+ f

✓
n� 1

2

◆◆

is positive for n � 3. To do this, confirm g(3) > 0 and then use calculus to show
that g(n) increases for n � 3. We leave the details to the reader.

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 486

486 Discrete Math Elements

Solutions for Chapter 21

1. Show that f(n) = 3 + n+ 2n is O
�
2n
�
.

Solution: As long as n > 2 we have 3  2n and n  2n, so |f(n)| = |3+n+2n| 
|2n + 2n + 2n| = | 3 · 2n| = 3 · |2n|. Therefore, for n > N = 2 and A = 3 we have
|f(n)|  A · |2n|, so by definition f(n) is O

�
2n
�
.

3. Show that f(n) = 25 + 8n+ log2(n) is O(n).

Solution: If n > 4, then 25  8n and log2(n)  8n, so |f(n)| = |25 + 8n +
log2(n)|  |8n+8n+8n| = |24n| = 24 · |n|. Therefore, for n > N = 4 and A = 24
we have |f(n)|  A · |n|, so by definition f(n) is O(n).

5. Show that f(n) = n log2(n) is O
�
n2
�
, but n2 is not O

�
n log2(n)

�
.

Solution: If n > 1, then n  2n, so log2(n)  log2(2
n) = n. Hence n log2(n) 

n · n = n2. Thus for n > N = 1 and A = 1, we have |n log2(n)|  A · |n2|, so
n log2(n) is O

�
n2
�
.

Next, suppose for the sake of contradiction that n2 is O
�
n log2(n)

�
. Then there

are positive numbers N and A for which n2  An log2(n) whenever n > N . So if
n > N , then n  A log2(n). Thus n isO

�
log2(n)

�
, contradicting Proposition 21.5.

7. Show that the function f(n) = 2n is O(n!), but n! is not O
�
2n
�
.

Solution: If n > N = 2, then |2n| = 2 · 2 · · · · · 2| {z }
n times

 n(n� 1)(n� 2) · · · 3 · 2 · 1
| {z }

n factors

=

1 · |n! |. This means 2n is O(n!). Next, suppose for the sake of contradiction that
n! is O

�
2n
�
. Then there are positive numbers N and A for which n!  A · 2n

whenever n > N . So if n > N , then n!  A·2n, and thus A  2·2·...·2
n(n�1)(n�2)···3·2·1 <

2·2·····2
n·n·····n =

�
2
n

�n
. Now, if n > 2

A , then 2
n < A. Further, if n > 2, then 2

n < 1,
and so

�
2
n

�n
< n

2 . Consequently, if n � max
�
N, 2

A , 2

, then

�
2
n

�n
< A. This

contradicts the fact (established above) that A <
�
2
n

�n
for all n > N .

9. Show that Fn is O
⇣⇣

1+
p
5

2

⌘n⌘
, and that

⇣
1+

p
5

2

⌘n
is O(Fn).

Outline: First use induction to prove that
⇣

1+
p

5
2

⌘a
+
⇣

1+
p
5

2

⌘a+1
=
⇣

1+
p
5

2

⌘a+2

for any positive integer a. With this fact, use induction again to show that

Fn 
⇣

1+
p

5
2

⌘n�1
 Fn+2 for any positive integer n. Now let A = 1+

p
5

2 . Then

Fn  1
A

⇣
1+

p
5

2

⌘n
for all n, so Fn is O

⇣⇣
1+

p
5

2

⌘n⌘
. Also,

⇣
1+

p
5

2

⌘n
 A3Fn for

n � 3, which means
⇣

1+
p
5

2

⌘n
is O(Fn).

11. Show that if lim
n!1

f(n)
g(n) = L, then f(n) is O

�
g(n)

�
.

Suppose lim
n!1

f(n)
g(n) = L. Then lim

n!1

��� f(n)
g(n)

��� = |L|, so lim
n!1

|f(n)|
|g(n)| = |L|. Choose a

number ✏ > 0 for which |L|+ " 6= 0. By definition of the limit, there is a number

N > 0 for which |f(n)|
|g(n)|  L+ " for all n > N . Therefore |f(n)|  (|L|+ ") · |g(n)|

for all n > N , which means f(n) is O
�
g(n)

�
.

13. Use Proposition 21.2 to prove Proposition 21.4.

Using L’Hôpital’s rule repeatedly, lim
n!1

nd

bn = lim
n!1

dnd�1

ln(b)bn = lim
n!1

d(d�1)nd�2

ln(b)2bn
=

lim
n!1

d(d�1)(d�2)nd�3

ln(b)3bn
= · · · = lim

n!1
d!

ln(b)dbn
= 0, so nd is O (bn). On the other

July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 487

Complexity of Algorithms 487

hand, lim
n!1

bn

nd = lim
n!1

ln(b)bn

dnd�1 = lim
n!1

ln(b)2bn

d(d�1)nd�2 = lim
n!1

ln(b)3bn

d(d�1)(d�2)nd�3 = · · ·

= lim
n!1

ln(b)dbn

d! = 1, so bn is not O
�
nd
�
.

15. Show the relation � is a transitive relation on the set of all real-valued functions
on (0,1). That is, show that f(n) � g(n) and g(n) � h(n) imples f(n) � h(n).

Suppose f(n) � g(n) and g(n) � h(n). This means f(n) is O(g(n)) but g(n)
is not O(f(n)), and g(n) is O(h(n)) but h(n) is not O(g(n)). Because f(n) is
O(g(n)), there are positive numbers N1 and A1 for which |f(n)|  A1 ·|g(n)| for all
n > N1. Because g(n) is O(h(n)), there are positive numbers N2 and A2 for which
|g(n)|  A2 · |h(n)| for all n > N2. Now put N = max

�
N1, N2

and A = A1A2.

Then for n > N we have |f(n)|  A1 · |g(n)|  A1 · A2 · |h(n)| = A · |h(n)|.
Therefore f(n) is O(h(n)).

To show that f(n) � h(n), it remains to show that h(n) is not O(f(n)). Suppose
to the contrary that h(n) is O(f(n)). Then there are positive numbers N and A
for which |h(n)|  A · |f(n)| for all n > N . In particular, for n > max

�
N,N1

we have |h(n)|  A · |f(n)|  AA1 · |g(n)|. This means that h(n) is O(g(n)), a
contradiction.

