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Chapter 19

Cardinality of Sets

This chapter is all about cardinality of sets. At first this looks like a very simple
concept. To find the cardinality of a set, just count its elements. If A = {a, b,c, d},
then [A| = 4; if B={n € Z: -5 <n <5}, then |B| = 11. In this case |[4| < |B|.
What could be simpler than that?

Actually, the idea of cardinality becomes quite subtle when the sets are infinite.
The main point of this chapter is to explain how there are numerous different kinds
of infinity, and some infinities are bigger than others. Two sets A and B can both
have infinite cardinality, yet |A| < |B|.

19.1 Sets with Equal Cardinalities

We begin with a discussion of what it means for two sets to have the same cardinality.
Up until this point we've said |A| = |B| if A and B have the same number of
elements: Count the elements of A, then count the elements of B. If you get the
same number, then |A| = |B|.

Although this is a fine strategy if the sets are finite (and not too big!), it doesn’t
apply to infinite sets because we’d never be done counting their elements. We need
a new approach that applies to both finite and infinite sets. Here it is:

Definition 19.1. Sets A and B have the same cardinality, written |A| = |B|,
if there is a bijective function f: A — B. If no such function exists, then the sets
have unequal cardinalities, that is, |A| # |B].

The picture below illustrates this. There is a bijective function f : A — B, so
|A| = |B|. The function f matches up A with B. Think of f as describing how to
overlay A onto B so that they fit together perfectly.

A f B

427
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On the other hand, if A and B are as indicated in either of the following figures,
then there can be no bijection f : A — B. (The best we can do is a function that is
either injective or surjective, but not both). Therefore the definition says |A| # | B]
in these cases.

A f B A f B

Qo
B W= O

Example 19.1. SetsA:{nGZ:0§n§5} andB:{neZ:—SSnSO}
have the same cardinality because f(n) = —n is a bijective function f: A — B.&»

Several comments are in order. First, if |A| = |B|, there can be lots of bijective
functions from A to B. We only need to find one of them in order to conclude
|A| = |B|. Second, as bijective functions play such a big role here, we use the word
bijection to mean bijective function. Thus the function f(n) = —n from Example
19.1 is a bijection. Also, an injective function is called an injection and a surjective
function is called a surjection.

We emphasize and reiterate that Definition 19.1 applies to finite as well as
infinite sets. If A and B are infinite, then |A| = |B| provided there exists a bijection
f: A — B. If no such bijection exists, then |A| # |B).

Example 19.2. This example shows that [N| = |Z|. To see why this is true, notice
that the following table describes a bijection f : N — Z.

1 3 4 5 6 7 8 9 10 11 12 13 14 15...
fmyJo 1 -1 2 -2 3 -3 4 -4 5 -5 6 -6 7 -—7..

Notice that f is described in such a way that it is both injective and surjective. Every
integer appears exactly once on the infinitely long second row. Thus, according
to the table, given any b € Z there is some natural number n with f(n) = b,
so f is surjective. It is injective because the way the table is constructed forces
f(m) # f(n) whenever m # n. Because of this bijection f : N — Z, we must
conclude from Definition 19.1 that |[N| = |Z|. )

Example 19.2 may seem slightly unsettling. On one hand it makes sense that
IN| = |Z| because N and Z are both infinite, so their cardinalities are both “infinity.”
On the other hand, Z may seem twice as large as N because Z has all the negative
integers as well as the positive ones. Definition 19.1 settles the issue. Because the
bijection f: N — Z matches up N with Z, it follows that |N| = |Z|. We summarize
this with a theorem.
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Theorem 19.1. There ezists a bijection f: N — Z. Therefore |N| = |Z|.

The fact that N and Z have the same cardinality might prompt us compare the
cardinalities of other infinite sets. How, for example, do N and R compare? Let’s
turn our attention to this.

In fact, [N| # |R|. This was first recognized by Georg Cantor (1845-1918),
who devised an ingenious argument to show that there are no surjective functions
f N — R. (This in turn implies that there can be no bijections f : N — R, so
IN| # |R| by Definition 19.1.)

We now describe Cantor’s argument for why there are no surjections f : N — R.
We will reason informally, rather than writing out an exact proof. Take any arbi-
trary function f : N — R. Here’s why f can’t be surjective:

Imagine making a table for f, where values of n in N are in the left-hand column
and the corresponding values f(n) are on the right. The first few entries might look
something as follows. In this table, the real numbers f(n) are written with all their
decimal places trailing off to the right. Thus, even though f(1) happens to be the
real number 0.4, we write it as 0.40000000. .. ., etc.

€

.40000000000000...
.50060708666900...
.50500940044101...
.50704008048050...
.90026000000506...
.828095882050020...
.50505550655808...
.72080640000448...
.55000088880077...
.50020722078051...
.90000880000900...
.50280008009671...
.89008024008050...
.50008742080226...
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There is a diagonal shaded band in the table. For each n € N, this band covers the
nt? decimal place of f(n):

The 1st decimal place of f(1) is the 1st entry on the diagonal.
The 2nd decimal place of f(2) is the 2nd entry on the diagonal.
The 3rd decimal place of f(3) is the 3rd entry on the diagonal.
The 4th decimal place of f(4) is the 4th entry on the diagonal, etc.
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The diagonal helps us construct a number b € R that is unequal to any f(n). Just
let the nth decimal place of b differ from the nth entry of the diagonal. Then the
nth decimal place of b differs from the nth decimal place of f(n). To be definite,
define b to be the positive number less than 1 whose nth decimal place is 0 if the
nth decimal place of f(n) is not 0, and whose nth decimal place is 1 if the nth
decimal place of f(n) is 0. Thus, for the function f from the above table, we have

b =0.01010001001000. . .

and b has been defined so that, for any n € N, its nth decimal place is unequal
to the nth decimal place of f(n). Therefore f(n) # b for every natural number n,
meaning f is not surjective.

Since this argument applies to any function f : N — R (not just the one in the
above example) we conclude that there exist no bijections f : N — R, so |N| # |R]
by Definition 19.1. We summarize this as a theorem.

Theorem 19.2. There exists no bijection f : N — R. Therefore |N| # |R|.

This is our first indication of how there are different kinds of infinities. Both
N and R are infinite sets, yet |N| # |R|. We will continue to develop this theme
throughout this chapter. The next example shows that the intervals (0,00) and
(0,1) on R have the same cardinality.

Example 19.3. Show that |(0,00)| = |(0,1)]. To accomplish this, we need to show
that there is a bijection f : (0,00) — (0,1). We describe this function geometrically.
Consider the interval (0,00) as the positive z-axis of R?. Let the interval (0, 1) be
on the y-axis as illustrated in Figure 19.1, so that (0, 1) is perpendicular to (0, c0).
The figure also shows a point P = (—1,1). Define f(z) to be the point on (0,1)
where the line from P to z € (0,00) intersects the y-axis. By similar triangles,
1 fl=) x

= ——=, and therefore f(z)= .
r+1 T r+1

If it is not clear from the figure that f : (0,00) — (0, 1) is bijective, you can verify
it using the techniques from Section 18.2. (Exercise 16, below.) “

A\ 4
8

Fig. 19.1 A bijection f : (0,00) — (0, 1)
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It is important to note that equality of cardinalities is an equivalence relation on
sets: it is reflexive, symmetric and transitive. Let us confirm this. Given a set A, the
identity function A — A is a bijection, so |A| = |A|. (This is the reflexive property.)
For the symmetric property, if |A| = |B|, then there is a bijection f : A — B,
and its inverse is a bijection f~!: B — A, so |B| = |A|. For transitivity, suppose
|A| = |B| and |B| = |C]. Then there are bijections f : A — B and g : B — C. The
composition go f : A — C is a bijection (Theorem 18.3), so |A| = |C|.

The transitive property can be useful. If, in trying to show two sets A and C
have the same cardinality, we can produce a third set B for which |A| = |B| and
|B| = |C], then transitivity assures us that indeed |A| = |C|. The next example
uses this idea.

Example 19.4. Show that |R| = |(0,1)].

Because of the bijection g : R — (0,00) where g(x) = 2%, we have |R| = |(0, c0)|.
Also, Example 19.3 shows that |(0,00)| = |(0,1)|. Therefore |R| = |(0,1)]. 2]

So far in this chapter we have declared that two sets have “the same cardinality”
if there is a bijection between them. They have “different cardinalities” if there
exists no bijection between them. Using this idea, we showed that |Z| = |N| #
IR| = [(0,00)| = |(0,1)]. So, we have a means of determining when two sets have
the same or different cardinalities. But we have neatly avoided saying exactly what
cardinality is. For example, we can say that |Z| = |N|, but what exactly is |Z], or
IN|? What exactly are these things that are equal? Certainly not numbers, for they
are too big. And saying they are “infinity” is not accurate, because we now know
that there are different types of infinity. So just what kind of mathematical entity
is |Z|? In general, given a set X, exactly what is its cardinality |X|?

This is a lot like asking what a number is. A number, say 5, is an abstraction,
not a physical thing. Early in life we instinctively grouped together certain sets of
things (five apples, five oranges, etc.) and conceived of 5 as the thing common to all
such sets. In a very real sense, the number 5 is an abstraction of the fact that any
two of these sets can be matched up via a bijection. That is, it can be identified with
a certain equivalence class of sets under the ”has the same cardinality as” relation.
(Recall that this is an equivalence relation.) This is easy to grasp because our sense
of numeric quantity is so innate. But in exactly the same way we can say that the
cardinality of a set X is what is common to all sets that can be matched to X via
a bijection. This may be harder to grasp, but it is really no different from the idea
of the magnitude of a (finite) number.

In fact, we could be concrete and define |X| to be the equivalence class of all
sets whose cardinality is the same as that of X. This has the advantage of giving
an explicit meaning to |X|. But there is no harm in taking the intuitive approach
and just interpreting the cardinality |X| of a set X to be a measure the “size” of
X. The point of this section is that we have a means of deciding whether two sets
have the same size or different sizes.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 432

432 Discrete Math Elements

Exercises for Section 19.1

A. Show that the two given sets have equal cardinality by describing a bijection from
one to the other. Describe your bijection with a formula (not as a table).

1. R and (0,00) 7. ZandSZ{ 11 2,1,2,4,8,16,.. }
2. R and (v/2,00) 8742

3. Rand (0,1) 8. Zand S={ze€R:sinz=1}

4. The set of even integers and 9. {07 1} x N and N

the set of odd integers

10. {0,1} x Nand Z
5. A={3k:k€Z} and B={Tk:keZ}

3 11. [0,1] and (0,1)
6. Nand S = {— in € N} 12. N and Z (See Exercise 18 of Sec-
n .
tion 18.2.)

13. Z(N) and Z(Z) (Suggestion: use Exercise 12, above.)
14. NxNand {(n,m) e NxN:n <m}

B. Answer the following questions concerning bijections from this section.
15. Find a formula for the bijection f in Example 19.2 (page 428).
16. Verify that the function f in Example 19.3 is a bijection.

19.2 Countable and Uncountable Sets

Let’s summarize the main points from the previous section.

e |A| =|B| if and only if there exists a bijection A — B.
e |N| = |Z]| because there exists a bijection N — Z.
e |N| # |R| because there exists no bijection N — R.

Thus, even though N, Z and R are all infinite sets, their cardinalities are not
all the same. The sets N and Z have the same cardinality, but R’s cardinality is
different from that of both the other sets. This means infinite sets can have different
sizes. We now make some definitions to put words and symbols to this phenomenon.

In a certain sense you can count the elements of N; you can count its elements off
as 1,2,3,4,..., but you’d have to continue this process forever to count the whole
set. Thus we will call N a countably infinite set, and the same term is used for any
set whose cardinality equals that of N.

Definition 19.2. Suppose A is a set. Then A is countably infinite if |[N| = | 4|,
that is, if there exists a bijection N — A. The set A is uncountable if A is infinite
and |N| # |A|, that is, if A is infinite and there exists no bijection N — A.

Thus Z is countably infinite but R is uncountable. This section deals mainly
with countably infinite sets. Uncountable sets are treated later.

If A is countably infinite, then |N| = |A|, so there is a bijection f : N — A.
You can think of f as “counting” the elements of A. The first element of A is f(1),
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followed by f(2), then f(3) and so on. It makes sense to think of a countably infinite
set as the smallest type of infinite set, because if the counting process stopped, the
set would be finite, not infinite; a countably infinite set has the fewest elements that
a set can have and still be infinite. It is common to reserve the special symbol Rg
to stand for the cardinality of countably infinite sets.

Definition 19.3.  The cardinality of the natural numbers N is denoted by R.
That is, |[N| = X. Thus any countably infinite set has cardinality Ro.

(The symbol X, pronounced “aleph,” is the first letter in the Hebrew alphabet. The
symbol Ry is pronounced “aleph naught.”) The summary of facts at the beginning
of this section shows |Z| = Rg and |R| # Ro.

Example 19.5. Let £ = {Qk 1k € Z} be the set of even integers. The function
f:Z — E defined as f(n) = 2n is easily seen to be a bijection, so |Z| = |E|. Thus,
as |N| = |Z| = |E|, the set E is countably infinite and |E| = Ny. yoa)

Here is a significant fact: The elements of any countably infinite set A can be
written in an infinitely long list a1, as,as,aq,... that begins with some element
a1 € A and includes every element of A. For example, the set E in the above
example can be written in list form as 0,2,—-2,4,—4,6,—6,8,—8,... The reason
that this can be done is as follows. Since A is countably infinite, Definition 19.2
says there is a bijection f : N — A. This allows us to list out the set A as an
infinite list f(1), f(2), f(3), f(4),... Conversely, if the elements of A can be written
in list form as aq,as,as, ..., then the function f: N — A defined as f(n) = a, is a
bijection, so A is countably infinite. We summarize this as follows.

Theorem 19.3. A set A is countably infinite if and only if its elements can be
arranged in an infinite list a1, asz,as, aq, . ..

For example, say P is the set of all prime numbers. Since we can list its elements
as 2,3,5,7,11,13, ..., it follows that the set P is countably infinite.

By Theorem 19.3, we can interpret the fact that the set R is not countably
infinite as meaning that it is impossible to write out all the elements of R in an
infinite list. (After all, we tried to do that in the table on page 429, and failed!)

This raises a question. Can we write out all the elements of QQ in an infinite list?
In other words, is the set Q of rational numbers countably infinite or uncountable?
If you start plotting the rational numbers on the number line, they seem to mostly
fill up R. Sure, some numbers such as v/2, 7 and e will not be plotted, but the
dots representing rational numbers seem to predominate. We might thus expect Q
to be uncountable. However, it is a surprising fact that Q is countable. The proof
presented below arranges all the rational numbers in an infinitely long list.
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Theorem 19.4. The set Q of rational numbers is countably infinite.

Proof. To prove this, we just need to show how to write the set Q in list form.
Begin by arranging all rational numbers the infinite array shown below. The top row
has a list of all integers, beginning with 0, then alternating signs as they increase.
Each column headed by an integer k contains all the fractions (in reduced form)
with numerator k. For example, the column headed by 2 contains the fractions
%7 %, %, %7 ..., etc. It does not contain %7 %7 %7 etc., because those are not reduced,
and in fact their reduced forms appear in the column headed by 1. You should

examine this table and convince yourself that it contains all rational numbers in Q.

o 1 -1 2 -2 3 -3 4 -4 5 =5

9 1 =1 2 =2 3 =3 4 —4 5 =5

1 1 1 1 1 1 1 1 1 1 1
1 =1 2 =2 3 =3 4 —4 5 =5
2 2 3 3 2 2 3 3 2 2
1 =1 2 =2 3 =3 4 —4 5 =5
3 3 5 5 4 4 5 5 3 3
1 =1 2 =2 3 =3 4 =4 5 =5
4 4 7 7 5 5 7 7 4 4
1 -1 2 =2 3 =3 4 =4 5 =5
5 5 9 9 7 7 9 9 6 6
1 -1 2 =2 3 -3 4 -4 5 =5
6 6 11 11 8 8 11 11 7 7
1 -t 2 =2 3 =3 4 -4 5 =5
7 7 13 13 10 10 13 13 8 8

Next, draw an infinite path in this array, beginning at % and snaking back and
forth as indicated below. Every rational number is on this path.

0 1 -1 2 -2 3 -3 4 -4 5 -5

9 1 =1 2 =2 3 =3 4 =4 5 =5

1 1 1 1 1 1 1 1 1 1 1
1 =1 2 =2 3 =3 4 —4 5 =5
2 2 3 3 2 2 3 3 2 2
1 =1 2 =2 3 =3 4 =4 5 =5
3 3 5 5 4 4 5 5 3 3
1 =1 2 =2 3 =3 4 =4 5 =5
4 4 7 7 5 5 7 T 4 4
1 =1 2 =2 3 =3 4 —4 5 =5
5 5 9 9 i 7 9 9 6 6
1 =1 2 =2 3 =3 4 4 5 =5
6 6 11 11 8 8 11 11 7 7
1 -t 2 =2 3 =3 4 -4 5 =5
T T 13 13 10 10 13 13 8 8
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Following this path, we get an infinite list of all rational numbers:

1 1 2 2 1 11 1 2 2 2 2 2 3
0,1, =, —=, —1,2, 2,2, 2, -, 2 2 2 2 2 2 2 932 .
) ’27 27 ) 737 57 37 37 47 47 77 77 57 37 37 ) ) 27
By Theorem 19.3, it follows that Q is countably infinite, that is, |Q| = |N|. O

It is also true that the Cartesian product of two countably infinite sets is itself
countably infinite, as our next theorem states.

Theorem 19.5. If A and B are both countably infinite, then so is A X B.

Proof. Suppose A and B are both countably infinite. By Theorem 19.3, we know
we can write A and B in list form as

A= {(117@2,0/3,0/4, v }7
B = {bl,b27b37b4,.. . }

Figure 19.2 shows how to form an infinite path winding through all of A x B.
Therefore A X B can be written in list form, so it is countably infinite. O

B

br (alib7) (az:b7) (as,:lw) (a4ib7) (asilv) (ae,:b7) (avibv) e
bs | (a1,be) (a2,be) (as,be) (aa,bs) (as,bs) (as,be) (az,be) -
bs | (a1,bs) (a2,bs) (a3, bs) (aa,bs) (as,bs) (as, bs) (az,bs)- -
ba | (a1,ba) (az,bs) (a3, bs) (a4,b4) (as,b4) (as,b4) (a7,b4)- -

b3 | (a1,bs) (az,bs) (as,bs) (as,bs) (as,bs) (as, bs) (az,b3) -

by | (a1,b2) (az,b2) (as,b2) (as,b2) (as,b2) (as, b2) (az,b2)- -

by (a1,b1) (a2,b1) (as,b1) (as,b1) (as,b1) (as,b1) (az,b1)- -

ay asz as as as ag ar > A

Fig. 19.2 A product of two countably infinite sets is countably infinite

As an example of a consequence of this theorem, notice that since Q is countably
infinite, the set Q x Q is also countably infinite.
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Recall that the word “corollary” means a result that follows easily from some
other result. We have the following corollary of Theorem 19.5.

Corollary 19.1. Given n countably infinite sets Ay, As, As, ..., Ay, withn > 2,
the Cartesian product Ay X A X Az X --- X Ay is also countably infinite.

Proof. The proof is by induction on n. For the basis step, notice that when n = 2
the statement asserts that for countably infinite sets A; and As, the product A; x As
is countably infinite, and this is true by Theorem 19.5.

Assume that for k > 2, any product Ay x As x A3 x--- XAy of countably infinite
sets is countably infinite. Consider a product A; x As X Az X +-- X Appq of k+1
countably infinite sets. It is easily confirmed that the function

FiAI XAy x Ag X -+ X Ap X App1 —> (A1 X Ay X Ag X -+ X A) X Apyq

flxy,mo, .. o, 1) = (($1>$2>~-7$k)7 1’k+1)

is bijective, so |A; X Ag X Az X -+ X A X Agy1]| = [(A1 X Aa X Ag X+ X Ap) X Agya].
By the induction hypothesis, (A1 X Ay X Az X -+ x Ay) X Akt is a product of two
countably infinite sets, so it is countably infinite by Theorem 19.5. As noted above,
A X Ay X Az X -+ X Ag X Agy1 has the same cardinality, so it too is countably
infinite. O

Theorem 19.6. If A and B are countably infinite, then AU B is countably
infinite.

Proof. Suppose A and B are both countably infinite. By Theorem 19.3, we know
we can write A and B in list form as

A= {a17a27a37a47 s }7
B = {b1.bs,ba by, .. }.

We can “shuffle” A and B into one infinite list for A U B as follows.
AUB = {ay,b1,a2,b3,a3,b3,a4,bs, ... }.

(We agree not to list an element twice if it belongs to both A and B.) Therefore,
by Theorem 19.3, it follows that A U B is countably infinite. O
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Exercises for Section 19.2

1. Prove that the set A = {In(n) : n € N} C R is countably infinite.

2. Prove that the set A = {(m, n) ENxN: m< n} is countably infinite.
3. Prove that the set A = {(5n,—3n) :n € Z} is countably infinite.
4

Prove that the set of all irrational numbers is uncountable. (Suggestion: Consider
proof by contradiction using Theorems 19.4 and 19.6.)

o

Prove or disprove: There exists a countably infinite subset of the set of irrational
numbers.

Prove or disprove: There exists a bijective function f: Q — R.
Prove or disprove: The set Q% is countably infinite.

Prove or disprove: The set Z x Q is countably infinite.

® ® N @

Prove or disprove: The set {0, 1} x N is countably infinite.

10. Prove or disprove: The set A = {? 'n € N} countably infinite.

11. Describe a partition of N that divides N into eight countably infinite subsets.
12. Describe a partition of N that divides N into Xy countably infinite subsets.
13. Prove or disprove: If A ={X CN : X is finite}, then |A| = No.

14. Suppose A = {(m,n) e Nx R:n =mm}. Is it true that [N| = |A|?

15. Theorem 19.5 implies that N x N is countably infinite. Construct an alternate
proof of this fact by showing that the function ¢ : N x N — N defined as ¢(m,n) =
2"~1(2m — 1) is bijective.

19.3 Comparing Cardinalities

At this point we know that there are at least two different kinds of infinity. On one
hand, there are countably infinite sets such as N, of cardinality Ng. Then there is
the uncountable set R. Are there other kinds of infinity beyond these two kinds?
The answer is “yes,” but to see why we first need to introduce some new definitions
and theorems.

Our first task will be to formulate a definition for what we mean by |A| < |B].
Of course if A and B are finite we know exactly what this means: |A| < |B| means
that when the elements of A and B are counted, A is found to have fewer elements
than B. But this process breaks down if A or B is infinite, for then the elements
can’t be counted.

The language of functions helps us overcome this difficulty. Notice that for
finite sets A and B it is intuitively clear that |A| < |B] if and only if there exists
an injective function f : A — B but there are no surjective functions f : A — B.
The following diagram illustrates this:
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A B
f

a 0
b 1
C 2
d 3

4

We will use this idea to define what is meant by |A| < |B| and |A| < |B|. For
emphasis, the following definition also restates what is meant by |A| = |B].

Definition 19.4. Suppose A and B are sets.
e |A| = |B| means there is a bijection A — B.
e |A| < |B| means there is an injection A — B, but no surjection A — B.
e |A| <|B|means |[A| < |B|or |A| =|B|.

For example, consider N and R. The function f: N — R defined as f(n) =n is
clearly injective, but it is not surjective because given the element % € R, we have
f(n) # % for every n € N. In fact, Theorem 19.2 of Section 19.1 asserts that there
is no surjection N — R. Definition 19.4 yields

IN] < |R| or, said differently, N < [R]. (19.1)

Is there a set X for which |R| < |X|? The next theorem implies |R| < |Z(R)|,

so the answer is “yes.” (Recall that &2(A) denotes the power set of A.)

Theorem 19.7. If A is any set, then |A| < |Z(A)|.

Proof. Before beginning the proof, we remark that this statement is obvious if A
is finite, for then |A| < 2141 = |2(A)|. But our proof must apply to all sets A, both
finite and infinite, so it must use Definition 19.4.

We prove the theorem with direct proof. Let A be an arbitrary set. According
to Definition 19.4, to prove |A| < |Z(A)| we must show that there is an injection
f:A— P(A), but no surjection f: A — F(A).

To see that there is an injection f: A — (A), define f by the rule f(z) = {x}
In words, f sends any element x of A to the one-element set {z} € Z(A). Then
[+ A— P(A) is injective, as follows. Suppose f(z) = f(y). Then {z} = {y}.
Consequently, = y, so it follows that z = y. Thus f is injective.

Next we need to show that there exists no surjection f : A — Z?(A). Suppose
for the sake of contradiction that there does exist a surjection f : A — Z2(A).
Notice that for any element z € A, we have f(z) € Z(A), so f(x) is a subset of A.
Thus f is a function that sends elements of A to subsets of A. It follows that for
any © € A, either z is an element of the subset f(z) or it is not. Using this idea,
define the following subset B of A:

B={zecA:z¢ f(x)} CA
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Because B C A we have B € #(A), and since f is surjective there is an a € A for
which f(a) = B. Now, either a € B or a ¢ B. We will consider these two cases
separately, and show that each leads to a contradiction.

Case 1. If a € B, then the definition of B implies a ¢ f(a), and since f(a)
we have a ¢ B, which is a contradiction.

Case 2. If a ¢ B, then the definition of B implies a € f(a), and since f(a) = B
we have a € B, again a contradiction.

B

Since the assumption that there is a surjection f : A — (A) leads to a
contradiction, we conclude that there are no such surjective functions.

In conclusion, we have seen that there exists an injection A — Z(A) but no
surjection A — (A), so Definition 19.4 implies that |A| < |F2(A4)]. O

Beginning with the set A = N and applying Theorem 19.7 over and over again,
we get the following chain of infinite cardinalities.

o = [N < [2ZN)] < [2(ZN)] < [Z2(Z@ZN)] < - (192)

So we have an infinite sequence of different types of infinity, starting with Xy and
becoming ever larger. The set N is countable, and all the sets Z(N), Z(Z(N)),
etc., are uncountable. It can be proved that |Z(N)| = |R|. Thus |N| and |R| are
the first two entries in the chain (19.2) above. They are just two relatively tame
infinities in a long list of other wild and exotic infinities.

Unless you plan on studying advanced set theory or the foundations of mathe-
matics, you are unlikely to ever encounter any types of infinity beyond Xy and |R|.
Still you may need to distinguish between countably infinite and uncountable sets,
so we close with two final theorems for this.

Theorem 19.8. An infinite subset of a countably infinite set is countably infinite.

Proof. Suppose A is an infinite subset of the countably infinite set B. Because B
is countably infinite, its elements can be written in a list by, bo, b3, by, ... Then we
can also write A’s elements in list form by proceeding through the elements of B, in
order, and selecting those that belong to A. Thus A can be written in list form, and
since A is infinite, its list will be infinite. Consequently A is countably infinite. [

Theorem 19.9. IfU C A, and U is uncountable, then A is uncountable.

Proof. Suppose for the sake of contradiction that U C A, and U is uncountable but
A is not uncountable. Then since U C A and U is infinite, then A must be infinite
too. Since A is infinite, and not uncountable, it is countably infinite. Then U is an
infinite subset of a countably infinite set A, so U is countably infinite by Theorem
19.8. Thus U is both uncountable and countably infinite, a contradiction. O
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Theorems 19.8 and 19.9 can be useful when we need to decide whether a set is
countably infinite or uncountable. They sometimes allow us to decide its cardinality
by comparing it to a set whose cardinality is known.

For example, suppose we want to decide whether or not the set 4 = R? is
uncountable. Since the z-axis U = {(z,0) : 2 € R} C R? has the same cardinality
as R, it is uncountable. Theorem 19.9 implies that R? is uncountable. Other
examples can be found in the exercises.

Exercises for Section 19.3
1. Suppose B is an uncountable set and A is a set. Given that there is a surjective
function f: A — B, what can be said about the cardinality of A?
Prove that the set C of complex numbers is uncountable.
Prove or disprove: If A is uncountable, then |A| = |R|.

Prove or disprove: If A C B C C and A and C are countably infinite, then B is
countably infinite.

Prove or disprove: The set {07 1} X R is uncountable.
Prove or disprove: Every infinite set is a subset of a countably infinite set.

Prove or disprove: If A C B and A is countably infinite and B is uncountable, then
B — A is uncountable.

8. Prove or disprove: The set {(al7 az,as,...) : a; € Z} of infinite sequences of integers
is countably infinite.

9. Prove that if A and B are finite sets with |A| = |B|, then any injection f: A — B
is also a surjection. Show this is not necessarily true if A and B are not finite.

10. Prove that if A and B are finite sets with |A| = |B|, then any surjection f : A — B
is also an injection. Show this is not necessarily true if A and B are not finite.

19.4 Case Study: Computable Functions

This section uses some of our recent results on cardinality to explore certain the-
oretical limitations on the problems that computers can solve. Roughly, we will
prove that there are more problems than there are algorithms to solve them, and
therefore some problems cannot be solved with algorithms.

We will investigate this in the somewhat controlled environment of functions
from N to N. Define a function f : N — N to be computable if there exists a
procedure that accepts any n € N as input, and outputs f(n).

For example, the factorial function f(n) = n!is computable because in Chapter 8
we wrote a procedure Fac for which Fac(n) = n! (see page 216). Also, the function
f for which f(n) is the nth Fibonacci number is a computable function because the
procedure Fib(n) in the solution of Exercise 8.13 computes it. You can imagine
writing a procedure for any function f(n) that applies familiar algebraic operations
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to n, so such functions are computable. Even an arbitrary piecewise function like
20—n2ifn<4
gn) =14 2" if4<n<10

3 it10<n

is computable because below is a procedure for which g(n) = Piece(n).

Procedure Piece(n)

begin
if n <4 then
| return 20 — n?
else
if 4 <n <10 then
| return 2"
else
| return 3
end
end
end

Given these examples, one might guess that any f : N — N is computable.
That is false. In fact, most functions are not computable, and we will spend the
remainder of this short section proving it. This involves two steps. In the first
step (Proposition 19.1, below) we show that there are uncountably many functions
f : N = N. Then we show that there are only countably many procedures. This
will force us to the conclusion that there are not enough procedures to compute all
the functions.

Proposition 19.1. The set of all functions f : N — N is uncountable.

Proof. Certainly there are infinitely many functions f : N — N. Suppose for the
sake of contradiction that this set of functions is countable. Then by Theorem 19.3,
these functions can be arranged in an infinite list

f17 f2> f37 f47 f57 ceey (193)

such that every function f : N — N is somewhere on this list. Imagine the following
infinite table that tallies the values of these functions. The table is arranged so that
its kth row is fx(1), fe(2), fr(3), fr(4),..., that is, each entry zj , is the number
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Li1.. T12 T13 T14 T15 Tie T17 Tig T19
T21 X22. T23 T24 T25 T26 T27 T28 T29

T31 T32 X33 T34 T35 T3e T37 T3 IT39

3

Tg1 T42 T43 T44 Tas5 T4e T47 T4g T49

3

T52 53 Ts4 T55. Ts56 Ts57 Ts8 Ts9

Te1 Te2 Te3 Ted4 Tes5 L66. Te7 T68 Te9

3

T71 Tr2 X733 Tr4 T7s Tre Xyr. Trg X79

Tg1 Tg2 Tg3 T84 Tgs T Tgr L8Y. Tg9

rrrrEsroe T
SN
TEEEEEEEE

8

(o]

g

Tg1 T92 T93 T94 T9s T9e L9t T9g XYY

The gray diagonal covers the entries f,(n) = 2, . These entries are the key to
producing a contradiction, for they lead to a function fy : N — N that is not on the
list (19.3). Simply define fy as

lifz,, =0
Joln) = {0 if 2y # 0.

Notice that if f,, is any function on the list (19.3), then f,(n) = x,, # fo(n).
Therefore f,, and fy are not equal, because they do not agree on the value n.
Consequently fo is not equal to any of the functions f, on the list (19.3). This
contradicts the assumption we made in the first paragraph of the proof, namely
that the list (19.3) contains every function N — N.

In summary, the assumption that the set of functions N — N is countable leads
to a contradiction, so this set is uncountable. O

Next we will argue that, even though the set of functions N — N is uncountable,
the set of procedures is countably infinite. To fix the discussion, consider procedures
that are written in some particular programming language. Programs (procedures)
in this language are written using a finite set ¥ of computer keyboard symbols.
(Here the sigma is a nemonic for “symbol,” not “sum.”) The set ¥ includes the
“blank” space character, which we will denote as “_” (to make it visible). Thus

E:{fa a, b7 Cyenry 2y A7 B7 MR} Z7 07 17 27"'797 (7 )7 +7 *, $7 {7 }7 /7 }3

where the blank character is listed first. Let’s say || = 100 (a value chosen for
simplicity, rather than by actually counting the symbols on a keyboard).

For a fixed positive integer k, the Cartesian power X% = ¥ x ¥ x --- x ¥ has
cardinality 100¥, a number that can be quite large, but it is finite.
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We can identify any length-k string of symbols from ¥ as an element of ©*. For
example, the string “for (i=2) to 10 do” appears in 318 as

(f7 o, I, —, (717 = 27 )777t7 0, —; 17 07*7d70) € 218'

Certainly %8 also contains some meaningless nonsense, like the encoding of
“uk9*C$aaaA2017hhhh”. But any procedure or fragment of a procedure that uses
18 or fewer characters is encoded in X'®. Likewise, any procedure that is written
in k or fewer characters can be regarded an element of X¥.

Now consider the set

T = Uzkzzluzmz?’uz‘lum
k=1

Any syntactically correct procedure is an element of this set. Granted, T also con-
tains a lot of meaningless nonsense. And it contains some brilliant non-procedures,
like Shakepere’s Othello. But the point is that T contains all procedures that can
possibly be written.

The interesting thing about Y is that it is countable. To verify this, we just
need to show that its elements can be arranged in an infinite list. This can be
done as follows. The first 100 entries of the list are the 100 symbols in 3. Follow
this with the 1002 = 10,000 elements of 2. Then the list continues with the
100% = 1,000,000 elements of 33, followed by the 100* = 100,000, 000 elements of
¥4, and so on. Therefore Y is countable.

The set of all possible procedures is a subset of the countably infinite set Y, so
it is countable by Theorem 19.8, which states that an infinite subset of a countable
set is countable. We have therefore proved the following result.

Proposition 19.2. The set of all programs (or procedures) that can be written in
a given programming language is countable.

This means that the set of computable functions—those functions that can be
computed with a procedure—is countable, because there are only countably many
procedures to compute them. But Proposition 19.3 says that the number of func-
tions N — N is uncountable. Therefore there exist functions that cannot be com-
puted with a procedure. This is our main result.

Theorem 19.10. There exist functions that are not computable, that is, they
cannot be computed by any procedure.
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Solutions for Chapter 19

Section 19.1 Exercises

1.

11.

13.

R and (0, c0)

Observe that the function f(z) = €® sends R to (0,00). It is injective because
f(x) = f(y) implies €” = €Y, and taking In of both sides gives x = y. It is
surjective because if b € (0,00), then f(In(b)) = b. Therefore, because of the
bijection f : R — (0, c0), it follows that |R| = |(0, c0)].

R and (0,1)

Observe that the function % f(z) = cot™'(z) sends R to (0,1). It is injective
and surjective by elementary trigonometry. Therefore, because of the bijection
f:R—(0,1), it follows that |R| =|(0,1)].

A={3k:k€Z}and B={Tk:keZ}

Observe that the function f(z) = Iz sends A to B. It is injective because
f(x) = f(y) implies %x = %y, and multiplying both sides by % gives x = y. It is
surjective because if b € B, then b = 7k for some integer k. Then 3k € A, and
f(Bk) = Tk = b. Therefore, because of the bijection f : A — B, it follows that
|A] = |B|.

Zand S={...,%%,3,1,2,4,8,16,...}

Observe that the function f : Z — S defined as f(n) = 2" is bijective: It is
injective because f(m) = f(n) implies 2™ = 2", and taking log, of both sides
produces m = n. It is surjective because any element b of S has form b = 2" for
some integer n, and therefore f(n) = 2™ = b. Because of the bijection f:Z — S,
it follows that |Z| = |S].

{0,1} x Nand N

Consider the function f : {0,1} x N — N defined as f(a,n) = 2n — a. This is
injective because if f(a,n) = f(b,m), then 2n — a = 2m — b. Now if a were
unequal to b, one of a or b would be 0 and the other would be 1, and one side of
2n — a = 2m — b would be odd and the other even, a contradiction. Therefore
a =b. Then 2n — a = 2m — b becomes 2n — a = 2m — a; add a to both sides and
divide by 2 to get m = n. Thus we have a = b and m = n, so (a,n) = (b,m),
so f is injective. To see that f is surjective, take any b € N. If b is even, then
b = 2n for some integer n, and f(0,n) =2n —0 =b. If b is odd, then b =2n + 1
for some integer n. Then f(1,n+1) =2(n+1) —1 =2n+1 = b. Therefore f is
surjective. Then f is a bijection, so [{0,1} x N| = |N|.

[0,1] and (0,1)

Proof. Consider the subset X = {1 :n e N} C[0,1]. Let f:[0,1] — [0,1) be
defined as f(z) =z if x € [0,1] — X and f(5) = 547 for any + € X. It is easy
to check that f is a bijection. Next let Y = {1—1:n € N} C[0,1), and define
g:00,1) = (0,1) as g(z) =z ifz €[0,1) =Y and g(1 - L) =1 - %H for any
1-— % €Y. Asin the case of f, it is easy to check that g is a bijection. Therefore
the composition g o f : [0,1] — (0,1) is a bijection. (See Theorem 18.3.) We
conclude that |[0, 1]| = |(0,1)]. O

Z(N) and Z(Z)
Outline: By Exercise 18 of Section 18.2, we have a bijection f : N — Z defined
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as f(n) = M Now define a function ® : F(N) — HP(Z) as

®(X) ={f(z): z € X}. Check that ® is a bijection.

15. Find a formula for the bijection f in Example 19.2.
Hint: Consider the function f from Exercise 18 of Section 18.2.

Section 19.2 Exercises

1. Prove that the set A = {In(n) : n € N} C R is countably infinite.
Just note that its elements can be written in infinite list form as
In(1),1n(2),1n(3),---. Thus A is countably infinite.

3. Prove that the set A = {(5n,—3n) : n € Z} is countably infinite.
Consider the function f : Z — A defined as f(n) = (5n, —3n). This is clearly
surjective, and it is injective because f(n) = f(m) gives (5n, —3n) = (5m, —3m),
8o 5n = 5m, hence m = n. Thus, because [ is surjective, |Z| = |A|, and |A| =
|Z| = Ro. Therefore A is countably infinite.

5. Prove or disprove: There exists a countably infinite subset of the set of irrational

numbers.
This is true. Just consider the set consisting of the irrational numbers

7. Prove or disprove: The set Q' is countably infinite.
This is true. Note Q' = Q x Q x --- x Q (100 times), and since Q is count-
ably infinite, it follows from the corollary of Theorem 19.5 that this product is

countably infinite.

9. Prove or disprove: The set {0,1} x N is countably infinite.
This is true. Note that {0,1} x N can be written in infinite list form as
(0,1),(1,1),(0,2),(1,2),(0,3),(1,3),(0,4),(1,4),---. Thus the set is countably
infinite.

11. Partition N into 8 countably infinite sets.

For each ¢ € {1,2,3,4,5,6,7,8}, let X; be those natural numbers that are con-
gruent to ¢ modulo 8, that is,

X, ={1,9,17,25,33,...}
X, ={2,10,18,26,34, ...
X5 = {3,11,19,27,35, . ..
X, = {4,12,20,28,36, ..
X5 = {5,13,21,29,37,. ..
X6 = {6,14,22,30,38, ..
X7 ={7,15,13,31,39, . ..
X5 = {8,16,24,32,40, . ..

G S S S S S S

13. If A= {X C N: X is finite}, then |A| = N,.

Proof. This is true. To show this we will describe how to arrange the items of
A in an infinite list X1, X2, X3, X4, .. ..
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For each natural number n, let p,, be the nth prime number. Thus p; = 2, p2 = 3,
p3 =5, ps =7, ps = 11, and so on. Now consider any element X € A. If X # (),
then X = {n1,n2,ns,...,nk}, where k = | X| and n; € Nfor each 1 <14 < k. Define
a function f: A — NU{0} as follows: f({ni,n2,n3,...,n%}) = Pn,Pns - * Py For
example, f({1,2,3}) = pip2ps =2-3-5 =30, and f({3,5}) = psps = 5-11 = 55,
etc. Also, we should not forget that @ € A, and we define f(0) = 0.

Note that f: A — NU {0} is an injection: Let X = {ni,n2,ns,...,nx} and put
Y = {m1,m2,ms,...,me}, and X # Y. Then there is an integer a that belongs
to one of X or Y but not the other. Then the prime factorization of one of the
numbers f(X) and f(Y) uses the prime number p, but the prime factorization
of the other does not use p,. It follows that f(X) # f(Y) by the fundamental
theorem of arithmetic. Thus f is injective.

So each set X € A is associated with an integer f(X) > 0, and no two different
sets are associated with the same number. Thus we can list the elements in X € A
in increasing order of the numbers f(X). The list begins as

0, {1}, {2}, {3}, {12}, {4}, {1,3}, {5}, {6}, {14}, {2,3}, {7}...
It follows that A is countably infinite. O

Hint: Use the fundamental theorem of arithmetic.

Section 19.3 Exercises

1.

Suppose B is an uncountable set and A is a set. Given that there is a surjective
function f: A — B, what can be said about the cardinality of A?

The set A must be uncountable, as follows. For each b € B, let a; be an element
of A for which f(as) = b. (Such an element must exist because f is surjective.)
Now form the set U = {as : b € B}. Then the function f : U — B is bijective, by
construction. Then since B is uncountable, so is U. Therefore U is an uncountable
subset of A, so A is uncountable by Theorem 19.9.

Prove or disprove: If A is uncountable, then |A| = [R].

This is false. Let A = Z(R). Then A is uncountable, and by Theorem 19.7,
IR| < |Z(R)| = |Al.

Prove or disprove: The set {0,1} X R is uncountable.

This is true. To see why, first note that the function f : R — {0} x R defined as
f(z) = (0,z) is a bijection. Thus |R| = |{0} x R|, and since R is uncountable,
so is {0} x R. Then {0} x R is an uncountable subset of the set {0,1} x R, so
{0,1} x R is uncountable by Theorem 19.9.

Prove or disprove: If A C B and A is countably infinite and B is uncountable,
then B — A is uncountable.

This is true. To see why, suppose to the contrary that B — A is countably infinite.
Then B= AU (B — A) is a union of countably infinite sets, and thus countable,
by Theorem 19.6. This contradicts the fact that B is uncountable.



