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Today’s Outline

1 Constrained gradient descent: conditional gradient method
(Frank-Wolfe)

2 Gradient projection method: an iterative algorithm for solving
constrained optimization over a simple set

3 Proximal point: extended gradient projection
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Quiz

1 What is the optimality conditions for constrained optimization
problems over a closed convex set

2 What is the optimality conditions for constrained optimization
problems over the nonnegative orthant Rn

+?
3 What is a projection? What are the properties of a projection

operator?
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Constrained gradient descent algorithms

Algorithms in this lecture:
1 They do not rely on any structure of the constraint set other than

convexity

2 They generate sequences of feasible points by search along
descent directions

Algorithm ingredient:
Feasible direction d 6= 0: x is feasible, if x + αd is feasible for all
α > 0 that is small enough
Descent direction d : d is feasible, and ∇f (x)>d < 0
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Algorithm framework

1 Start at a feasible solution x0

2 Generate a sequence of feasible solutions xk+1 = xk + αkdk

dk is a feasible and descent direction
αk is chosen so that f (xk + αk dk ) < f (xk )

3 Stepsize rule on αk :
Armijo criterion
Constant step size αk = 1

Q: How to choose an initial feasible solution x0?
A: When C is a polyhedron, i.e., defined by systems of linear
equations/inequalities, we can find one by solving a linear program
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Conditional gradient method (Frank Wolfe)

Conditional gradient method
A straghtforward way to obtain a descent direction:

min∇f (xk )>(x − xk ) s.t. x ∈ C

The optimal solution x̄ , dk = x̄ − xk

x̄ will always be on the boundary of C
Makes sense only when this problem is much easier to solve than
the original problem. E.g., f is nonlinear, C is a polyhedron
Convergence could be very slow: sublinear convergence,
limk→∞

‖xk+1−x∗‖
‖xk−x∗‖ = 1 in some cases

Works well for problems with a low requirement on solution
accuracy
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Fundamental theorem in gradient projection

Theorem
Ω is a nonempty closed convex set, let x∗ ∈ Ω

(a) x∗ ∈ argminx∈Ω f (x)⇒ PΩ(x∗ − λ∇f (x∗)) = x∗, ∀λ > 0
(b) If PΩ(x∗ − λ∇f (x∗)) = x∗ for some λ > 0, and f is convex, then

f (x∗) = minx∈Ω f (x)

Note something interesting here: If PΩ(x∗ − λ∇f (x∗)) = x∗ for
some λ > 0, then PΩ(x∗ − λ∇f (x∗)) = x∗ for all λ > 0
Condition (a) is called gradient projection optimality condition
(GPOC)
GPOC is a generalized definition for stationary point, ∇f (x) = 0
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Gradient projection algorithm

1 GPOC can be seen as a fixed point structure: F (x∗) = x∗, where
F (x∗) = PΩ(x∗ − λ∇f (x∗))

2 GPOC can be seen as steepest descent + projection, which is
intuitive!

Recall: Stepsize selection problem? φ(α) = f (xk + αpk )
Wolfe condition

φ(α) ≤ φ(0) + c1φ
′(0)α,0 < c1 < 1

φ′(α) ≥ c2φ
′(0),0 < c2 < 1

Q: What is the problem? φ(λ) here is nonsmooth! So φ′(λ) is not
available! We cannot use Wolfe condition!
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Armijo backtracking algorithm

Armijo criterion:

f (xk (βmλ)) ≤ f (xk ) + c∇f (xk )>(xk (βmλ)− xk )

Choose the smallest m that the above holds, β ∈ (0,1)

Choose an initial λ
Try points PΩ(xk − βmλ∇f (xk )), for m = 0,1, . . .
Stop when sufficient decrease holds

Theorem
(a) There always exists a qualifying stepsize that satisfies Armijo

criterion
(b) Gradient projection algorithm converges to a generalized

stationary point
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Rate of convergence

Consider a strictly convex quadratic function f (x) = 1
2x>Qx − b>x , let

x∗ be the unique minimizer of f over Ω. Consider using a constant step
size s, then:

‖xk+1 − x∗‖ = ‖[PΩ(xk − s∇f (xk ))]− [PΩ(x∗ − s∇f (x∗))]‖
≤ ‖(xk − s∇f (xk ))− (x∗ − s∇f (x∗))‖
= ‖(I − sQ)(xk − x∗)‖
≤ max{|1− sm|, |1− sM|}‖xk − x∗‖

where m and M are the smallest and largest eigenvalues of Q.

Concern on gradient projection
1 Convergence rate same as steepest descent, which is slow!
2 Gradient projection is still hard! Projection operator is really heavy

Work well on REALLY simple constraints, e.g., box constraints,
where the projection is easy
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Proximal point

Proximal point

proxP(x) = argmin
y

1
2
‖x − y‖22 + P(y)

where:
P(y) is an extended value convex function: can take value +∞
and −∞
“=” is well-defined because of strong convexity

Examples:
Indicator function: 1C(x) = 0 if x ∈ C, and +∞ if x /∈ C
Q: What is prox1C

(x)? projC(x)!

P(x) = µ
2‖x‖

2
2

Q: What is proxP(x)? 1
1+µx , shrink x towards origin
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Proximal point: extended gradient projection

A decomposed unconstrained problem

min h(x) = f (x) + P(x)

where f is smooth, and P is convex

Extended projection gradient: iterative alternating between proximal
point and gradient direction

xk+1 = proxαk P(xk − αk∇f (xk ))

Theorem
If f is convex, P is convex, then x∗ ∈ argminx f (x) + P(x) if and only if
x∗ = proxvP(x∗ − v∇f (x∗)
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Proximal point method

Q: How about solving constrained optimization problem?

min
x∈C

f (x)⇔ min f (x) + 1C(x)

Advantage of proximal point method:
Allow us to solve nonsmooth function minimization at a linear rate
For more information, check out Convex Optimization by Boyd
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Next time

Penalty functions for general constrained optimization
Chapter 17 NW book
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