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Today’s Outline

@ Constrained gradient descent: conditional gradient method
(Frank-Wolfe)

@ Gradient projection method: an iterative algorithm for solving
constrained optimization over a simple set

© Proximal point: extended gradient projection
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@ What is the optimality conditions for constrained optimization
problems over a closed convex set

© What is the optimality conditions for constrained optimization
problems over the nonnegative orthant R’ ?

© What is a projection? What are the properties of a projection
operator?
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Constrained gradient descent algorithms

Algorithms in this lecture:

@ They do not rely on any structure of the constraint set other than
convexity

@ They generate sequences of feasible points by search along
descent directions

Algorithm ingredient:

@ Feasible direction d # 0: x is feasible, if x + ad is feasible for all
a > 0 that is small enough

@ Descent direction d: d is feasible, and Vf(x)'d < 0
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Algorithm framework

@ Start at a feasible solution x°

@ Generate a sequence of feasible solutions x*+1 = xk + o d*

e d¥ is a feasible and descent direction
@ ay is chosen so that f(x* + a,d®) < f(x¥)

© Stepsize rule on a:
o Armijo criterion
o Constant step size ax = 1
Q: How to choose an initial feasible solution x°?
A: When C is a polyhedron, i.e., defined by systems of linear
equations/inequalities, we can find one by solving a linear program
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Conditional gradient method (Frank Wolfe)

Conditional gradient method
A straghtforward way to obtain a descent direction:

min VA(x¥)T(x — x)st. xe C

The optimal solution X, dX = x — x¥

@ Xx will always be on the boundary of C

@ Makes sense only when this problem is much easier to solve than
the original problem. E.g., f is nonlinear, C is a polyhedron
@ Convergence could be very slow: sublinear convergence,

. K+1_ % .
lIMk—y00 w =1 in some cases

@ Works well for problems with a low requirement on solution
accuracy
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Fundamental theorem in gradient projection

Q is a nonempty closed convex set, let x* € Q

(@) x* € argmin,q f(x) = Po(x* — AVf(x*)) = x*, VA >0

(b) If Po(x* — AVf(x*)) = x* for some X\ > 0, and f is convex, then
f(x*) = mingeq f(X)

@ Note something interesting here: If Po(x* — AVf(x*)) = x* for
some A > 0, then Pq(x* — AVf(x*)) = x*forall A > 0

@ Condition (a) is called gradient projection optimality condition
(GPOC)
@ GPOC is a generalized definition for stationary point, Vf(x) = 0
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Gradient projection algorithm

@ GPOC can be seen as a fixed point structure: F(x*) = x*, where
F(x*) = Pqo(x* — AVf(x*))
© GPOC can be seen as steepest descent + projection, which is
intuitive!
Recall: Stepsize selection problem? ¢(«) = f(xx + apk)
Wolfe condition
@ ¢(a) < ¢(0) + c1¢'(0)r,0 < ¢y < 1
0 ¢'(a) > c2¢'(0),0 < c2 < 1
Q: What is the problem? ¢()) here is nonsmooth! So ¢/(\) is not
available! We cannot use Wolfe condition!
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Armijo backtracking algorithm

Armijo criterion:
Fxi(B™A)) < f(xi) + eV (k) T (ac(B™A) — x)

Choose the smallest m that the above holds, 5 € (0,1)
@ Choose an initial A
@ Try points Pqo(xx — 8MAVf(xk)), form=0,1,...
@ Stop when sufficient decrease holds

(a) There always exists a qualifying stepsize that satisfies Armijo
criterion

(b) Gradient projection algorithm converges to a generalized
stationary point
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Rate of convergence

Consider a strictly convex quadratic function f(x) = %XT Qx — b'x, let
x* be the unique minimizer of f over 2. Consider using a constant step
size s, then:
X1 — x| = [[Pa(x = sVF(x*))] - [Pa(x* = sVi(x*))]|
< I = sVH(x¥)) - (x* — sVF(x"))|
= [|(1 = sQ)(x* = x|
< max{|1 — sm|,|1 — sM|}||x* — x*||

where m and M are the smallest and largest eigenvalues of Q.

Concern on gradient projection

@ Convergence rate same as steepest descent, which is slow!
@ Gradient projection is still hard! Projection operator is really heavy

o Work well on REALLY simple constraints, e.g., box constraints,
where the projection is easy
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Proximal point

Proximal point
o1
proxp(x) = argmin 5|[x — y|/3 + P(y)

where:

@ P(y) is an extended value convex function: can take value +oo
and —oo

@ “="is well-defined because of strong convexity

Examples:

@ Indicator function: 1¢(x) =0if x € C,and +x if x ¢ C
Q: What is prox, .(x)? projc(x)!

o P(x)=45x3
Q: What is proxp(x)? ﬂTux, shrink x towards origin
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Proximal point: extended gradient projection

A decomposed unconstrained problem

min h(x) = f(x) + P(x)

where f is smooth, and P is convex

Extended projection gradient: iterative alternating between proximal
point and gradient direction

Xk1 = ProX,, p(Xk — ax VI(xk))

If f is convex, P is convex, then x* € argmin, f(x) + P(x) if and only if
X* = prox,p(x* — vV£(x*)
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Proximal point method

Q: How about solving constrained optimization problem?
min f(x) < min f(x) + 1¢(x)
xeC
Advantage of proximal point method:
@ Allow us to solve nonsmooth function minimization at a linear rate
@ For more information, check out Convex Optimization by Boyd
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Penalty functions for general constrained optimization
Chapter 17 NW book
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