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Network under Joint Node and Link Attacks:
Vulnerability Assessment Methods and Analysis
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Abstract—Critical infrastructures such as communication net-
works, electrical grids, and transportation systems are highly
vulnerable to natural disasters and malicious attacks. Even
failures of few nodes or links may have a profound impact on
large parts of the system. Traditionally, network vulnerability
assessment methods separate the studies of node vulnerability
and link vulnerability, and thus ignore joint node and link attack
schemes that may cause grave damage to the network.

To this end, we introduce a new assessment method, called
β-disruptor, that unifies both link and node vulnerability as-
sessment. The new assessment method is formulated as an
optimization problem in which we aim to identify a minimum cost
set of mixed links and nodes that removal would severely disrupt
the network connectivity. We prove the NP-completeness of the
problem and propose an O(

√
logn) bicriteria approximation

algorithm for the β-disruptor problem. This new theoretical
guarantee improves the best approximation results for both
link and node vulnerability assessment in literature. We further
enhance the proposed algorithm by embedding it into a special
combination of simulated annealing and variable neighborhood
search method. The results of our extensive simulation-based
experiments on synthetic and real networks show the feasibility
and efficiency of our proposed vulnerability assessment methods.

Index Terms—Approximation algorithm; Joint node and link
attacks; Vulnerability assessment;

I. INTRODUCTION

Disruptive events, ranging from natural disasters to ma-
licious attacks, can drastically compromise the network’s
ability to meet its quality-of-service(QoS) requirements, if not
cause widespread service outages and potentially total network
breakdown [1], [2], [3], [4]. Moreover, there is a significant
concern over critical infrastructures in electrical power grids
and highway systems as targets for terrorist attacks [5]. To
mitigate the risk and develop proactive responses, it is essential
to assess network vulnerability to identify the most destructive
attack scenarios.

Although there has been a significant amount of work on
assessing network vulnerability, most previous works focus
mainly on using centrality measurements e.g. degree, betwee-
ness, and closeness centralities [6], [7] to identify critical links
or nodes. Unfortunately, these approaches only determine the
relative importance of a small number of nodes or links and
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cannot reveal the enormous damage potential caused under
simultaneous attacks. Other set of works studies links and
nodes removal problems that optimize several global graph
measures, such as clustering coefficient, network diameter, etc.
However, these measures do not cast well for particular kinds
of network vulnerability, when the network connectivity is of
high priority. To this end, pairwise connectivity, the number
of node pairs that remain connected, has been recently used
as an effective measure to account for the effect of the attacks
[2], [8], [9], [10], [11].

(a) Node attack (b) Link attacks (c) Link-node attack

Fig. 1: In a., removing nodes 3 and 7 effectively breaks the network
into two parts, disrupting 67% connectivity. This causes more damage
than removing the highest degree nodes 1 and 2 which only disrupts
35% connectivity. Figures a., b., and c. also show minimum cost
solutions to reduce 50% of the connectivity assuming links have cost
2 and nodes have cost 3. The minimum cost is 6 if we remove only
nodes (a.) or only links (b.), and is 5 if we remove both links and
nodes (c.). Thus, it is insufficient to study node and link attacks
separately.

The advantage of the pairwise connectivity metric over the
node centrality measures is illustrated in Fig. 1a. Assume two
nodes are to be removed from our simple example. If the two
nodes are selected according to their degree centrality, nodes 1
and 2 will be removed and the residual network remains con-
nected. However, if we remove nodes to minimize the pairwise
connectivity, nodes 3 and 7 are going to be targeted, and the
network is effectively broken into two smaller components;
and the fraction of connected pairs reduces drastically from
55 to 18, a 67% reduction.

Fig. 1 also illustrates a fundamental shortcoming of exist-
ing work: the ability to assess network vulnerability under
joint node and link attacks. The three sub-figures show the
minimum cost attack strategies to reduce β = 50% pairwise
connectivity, assuming each link has cost 2 and each node
has cost 3. While the minimum costs for both node-attack
(Fig. 1a) and link-attack (Fig. 1b) are 6, the minimum cost
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for node-link attacks (node 3 and link (6, 7)) (Fig. 1c) is
only 5. Thus, it is insufficient to assess link vulnerability and
node vulnerability separately when both links and nodes in the
network can be targeted. To make matters worse, assume node
3 and link (6, 7) have the same cost ε > 0, the minimum costs
for node, link, and node-link attacks will be 3 + ε, 4 + ε, and
2ε, respectively. As the ratios (3+ε)/(2ε) and (4+ε)/(2ε) go
unbounded, the existing methods can seriously misjudge the
network vulnerability.

To address the shortcoming, we study the effect of joint
node and link attacks in term of connectivity. We introduce
a new problem, called β-disruptor, that finds a minimum cost
set of nodes and links whose removal degrades the pairwise
connectivity to a great extent (a fraction β). The β-disruptor
problem aims to provide a more comprehensive assessment
on network vulnerability. It generalizes both the β-vertex
disruptor and the β-edge disruptor problems proposed in our
previous work [9]. To our best knowledge, this is the first work
to address the effect of simultaneous attacks on both links and
nodes on network pairwise connectivity.

Our contributions are summarized as follows

• Providing an underlying framework toward assessing
vulnerability under joint node and link attacks and
formulating it as an optimization problem β-disruptor.
Other performance measures such as the maximum flow
between a given source-destination pair [11], [12], the
average maximum flow between pairs of nodes [11], etc.
can also be used in place of pairwise connectivity to
define new problems.

• Our major result is an O
(√

log n
)

bicriteria approxima-
tion algorithm for both undirected and directed networks.
The algorithm finds a β-disruptor with the cost at most
O
(√

log n
)

times that of an optimal β′-disruptor, with
β′ slightly less than β.

• We propose an efficient meta-heuristic which combines
simulated annealing, variable neighborhood search, and
spectral clustering. The efficacy and scalability of our
proposed algorithms is shown through extensive experi-
ments on both synthetic and real-world datasets.

Related work. Many existing works on network vulnerabil-
ity assessment mainly focus on the local centrality measure-
ments to differentiate between critical links and nodes and the
others, see [13], [9]. Other global graph measures have also
been proposed to assess network vulnerability. These measures
are mainly functions of graph properties, such as the diameter,
global clustering coefficient, etc. [1], [2].

Matisziw and Murray [13] first proposed the pairwise con-
nectivity as an effective measurement and use mathemati-
cal programming to solve for exact solutions. Arulselvan et
al. later define the Critical Node/Edge problems, which the
main objective is to identify top k nodes/links that removal
minimize the pairwise connectivity in the residual network,
and provide NP-completeness proofs and integer programming
formulations. However, the run-time for exact solutions scale
exponentially with the network size. Di Summa et al. [14]
proved that the critical node detection problem (CNP) is
also NP-complete on trees for the total weighted pairwise

connectivity metric. Shen et al. [15] proved that the CNP is
polynomially solvable in trees and series-parallel graphs for
the cases when the nodes have uniform costs and and the
objective is either minimizing the size of the largest component
or maximizing the number of residual components.

We first proposed the assessing vulnerability methods in
form of optimization problems β-edge/vertex disruptor in [9],
[10]. The paper presents NP-hardness of β-edge/vertex disrup-
tor problems, an O

(
log1.5 n

)
bicriteria approximation algo-

rithm for β-edge disruptor, and an O (log n log log n) bicriteria
approximation algorithm for β-vertex disruptor. These works,
however, consider node failures and link failures separately.

Several works consider multiple attacks that happen at
both links and nodes at the same time [16], [17], [18] with
other measurements of network connectivity. The most often
used measures are two-terminal-reliability (whether or not two
specific nodes s and t are connected) or all-terminal-reliability
(whether the network is connected). Those measures can only
capture whether or not the network is disconnected but cannot
reveal the level of disconnectivity/fragmentation as in the case
of pairwise connectivity.

Organization. We briefly present terminologies and prob-
lem definitions in Section II. Then we propose the O(

√
log n)

bicriteria approximation algorithm for β-disruptor in Section
III. Section IV presents the efficient heuristic to find β-
disruptor. We obtain numerical results in Section V. The
conclusion is presented in Section VI.

II. PRELIMINARIES

A. Model and Definitions

We abstract our general network model as a graph G =
(V,E), where V refers to a set of nodes and E refers to
a set of links. Each vertex u ∈ V is associated with a cost
c(u) ≥ 0 and each edge (u, v) ∈ E has a cost c(u, v) ≥ 0. For
convenience, we also denote the number of nodes and links
by n and m, respectively.

In an undirected graph, a vertex pair (u, v) ∈ V × V is
connected iff there exists a path between u and v. In a directed
graph, a vertex pair (u, v) is said to be connected if there
exist paths between u and v in both directions. We denote
the pairwise connectivity of a graph G by P(G). Apparently,
the pairwise connectivity is maximized at

(
n
2

)
when G is a

(strongly) connected graph. For convenience, we use the word
component to refer to connected component in undirected
graphs and strongly connected component (SCC) in directed
graphs whenever the context is clear.
β-disruptor. Given 0 ≤ β ≤ 1, a β-disruptor Dβ is a pair

of subsets
Dβ = (Vβ ⊆ V,Eβ ⊆ E)

that removal from G will make the pairwise connectivity in
the residual graph G′ = (V \ Vβ , E \ (Eβ ∪ Vβ × Vβ)) to be
at most β

(
n
2

)
. The β-disruptor problem asks for a β-disruptor

with the minimum total cost

c(Dβ) =
∑
u∈Vβ

c(u) +
∑
e∈Eβ

c(e).

There are two special types of β-disruptor: if Vβ = ∅,
then Dβ is a β-edge disruptor; and if Eβ = ∅, then Dβ is
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a β-vertex disruptor. The uniform-cost versions of β-edge
disruptor problem and the β-vertex disruptor problem are
previously studied in [19].

By definition, β-vertex disruptor is a special case of β-
disruptor when all edges have infinity costs and β-edge
disruptor is a special case of β-disruptor when all vertices have
infinity costs. Since both vertex and edge disruptor are NP-
hard, the β-disruptor problem is also NP-hard for 0 < β < 1.

B. Nodes and Edges with Excess Costs

We give simple criteria to identify quickly “safe” nodes
and edges that are not the vulnerabilities of the network due
to their excess costs. This helps narrowing down the search
space for vulnerabilities and suggests the protection priorities
and resource allocation to other network elements.

Since removing either u or v causes more disruption than
removing the edge (u, v), edges with excess costs can be
identified based on the following lemma.

Lemma 1: An edge (u, v) ∈ E with c(u, v) >
min{c(u), c(v)} will not appear in any optimal β-disruptor
for any β ≥ 0.
The lemma also reflects the fact that nodes’ costs are often
higher than the costs of the incident links.

Similarly, removing a node has the same effect as removing
all the incident edges; and a node u is an excess cost node if
c(u) is higher than the total costs of the incident edges.

Lemma 2: A vertex u with c(u) >
∑

(u,v)∈E c(u, v) will
not appear in any optimal β-disruptor for any β ≥ 0.

For non-excess nodes and edges, Lemmas 1 and 2 provide
the relative caps for how much extra resource we should
allocate to those network elements.
III. BICRITERIA APPROXIMATION ALGORITHM FOR JOINT

LINK & NODE ATTACKS
In this subsection, we present an O(

√
log n) bicriteria

approximation algorithm for the β-disruptor problem. Since
both β-vertex disruptor and β-edge disruptor are special cases
of β-disruptor, our new algorithm improve the best results for
β-vertex disruptor, the O(log n log log n) bicriteria approxima-
tion algorithm, and β-edge disruptor, the O(log3/2 n) bicriteria
approximation algorithm [9].

TABLE I: Table of Symbols

Notation Meaning

n Number of vertices/nodes
m Number of edges/links
G′ The auxiliary graph of G
P(G) Pairwise connectivity of G
α(G) Minimum ratio cut in G
αmin(G) min{α(C) | C is a SCC of G}
G[E \ Eβ ] Residual graph after removing edges in Eβ
G[−Dβ ] Residual graph after removing Dβ

OPTβ(G) Cost of optimal β-disruptor in G
OPTEβ (G) Cost of optimal β-edge disruptor in G

A. Algorithm Description
We will refer to the input network as the original network.

We first reduce the β-disruptor problem in the original network
to an instance of the β-edge disruptor problem in an auxiliary

directed graph. The reduction maps each undirected edge to
two alternating directed edges and each node to a surrogate
edge. More importantly, we show that the reduction ‘preserves’
relative performance guarantees. We then apply a recursive cut
procedure to find a near-optimal set of both alternating edges
and surrogate edges that correspond to a β-disruptor in the
original network.

Our algorithm JLNA(G) to find a β-disruptor in directed
graph G is summarized in Algorithm 1. For clarity, we provide
a list of symbols in Table I. In the first phase, the algorithm
constructs an auxiliary graph G′ by splitting each vertex v ∈ V
into two new vertices v+ and v−. Formally, the set of vertices
and edges in G′ are defined as

V ′ = { v−, v+ | v ∈ V }
E′ = {(v−, v+) | v ∈ V } ∪ {(u+, v−) | (u, v) ∈ E}

In addition, we assign costs c′(.) for edges in G′ as
follows: c′(v−, v+) = c(v) for the surrogate edge (v−, v+)
and c′(u+, v−) = c(v+, u−) = c(u, v) for alternating edges
(u+, v−) and (v+, u−). In the case, E is a mix of both undi-
rected and directed edges, we can also convert each directed
edge (p, q) ∈ E into an alternating edge (p+, q−) ∈ E′ with
a cost c′(p+, q−) = c(p, q).

In the second phase, the recursive cut procedure, shown in
lines 4 to 11, construct a β̃-edge disruptor of G′, denoted by
Eβ̃ . Here for a given β′ < β, β̃ = 1

2 (β + β′). We show later
in the proof of Theorem 1 that when P(G′) > β̃

(
n
2

)
(line 6),

we indeed obtain a β-disruptor in G. The β̃-edge disruptor
is found by iteratively applying a subroutine SPARSE CUT
on the strongly connected components in G′. The subroutine
SPARSE CUT cut the components into smaller ones and the
edges in a subset of the cuts are added to Eβ̃ . The process
continues until the pairwise connectivity in the graph reduces
to β

(
n
2

)
or smaller. By the end of the second phase, Eβ̃ is

mapped back to edges and nodes in G to give a β-disruptor.
Algorithm 1 JLNA(G)

1. Construct the auxiliary graph G′ = (V ′, E′)

2. β̃ ← 1
2 (β + β′)

3. Eβ̃ ← ∅
4. for each SCC C in G′

5. (CE , Cα)← SPARSE CUT(C)

6. while P(G′) > β̃
(
n
2

)
7. Find a SCC C∗ of G′ with minimum cut ratio C∗α
8. Eβ̃ ← Eβ̃ ∪ C∗E
9. Remove edges in C∗E from G′

10. for each new component C ′ in G′

11. (C ′E , C
′
α)← SPARSE CUT(C ′)

12. Vβ ← {v | (v−, v+) ∈ Eβ̃}
13. Eβ ← {(u, v) | (u−, v+) ∈ Eβ̃}
14. return Dβ = (Vβ , Eβ)

As shown in lines 4 and 5, the subroutine SPARSE CUT
is applied to each strongly connected component C to find a
minimum ratio cut 〈S′, S′〉 in C. The cut ratio for a cut is
defined as follows.

Definition 1: Let G′ = (V ′, E′) be a directed graph. The
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ratio of a cut 〈S′, S′〉 is α(S′) = cout(S
′)

|S′||S′| , where cout(S′) is
the total cost of edges coming out from S′. In addition, a cut
with the minimum cut ratio is called a minimum ratio cut and
denoted by

α(G′) = min
S′(V ′

α(S′)

The output of SPARSE CUT is a pair (CE , Cα), where
CE = 〈S′, S̄′〉 and Cα = α(S′). To obtain the best theoretical
performance guarantee, we use in place of SPARSE CUT
the sparsest cut algorithm in [20]. For completeness, we
summarize the algorithm in the appendix.

Within the main loop of JLNA (lines 6 to 11) we select
in each round a SCC C∗ in G that has the smallest cut
ratio. Let C∗E and C∗α be the cut set and the cut ratio of
the cut found by SPARSE CUT in C∗. We add C∗E to Eβ̃
and remove C∗E from G. Removing Eβ̃ breaks C∗ into two
or more strongly connected components. We again apply
SPARSE CUT on those components to find the minimum ratio
cuts. The reason not to apply SPARSE CUT on G′ is that G′ is
likely disconnected after removing edges. Thus SPARSE CUT
will likely return SCCs in G′ with minimum cut ratio zero.

The main loop terminates when the pairwise connectivity in
G is no more than β

(
n
2

)
. Then we construct the final solution

by mapping each surrogate edge (v−, v+) ∈ Eβ̃ to the node
v in G, and each alternating edge (u−, v+) ∈ Eβ̃ to the edge
(u, v) in G.

Fig. 2: High interdependence of networks’ elements. Removing the
marked link (u, v) breaks the (strongly) connected network into four
components. Notice that the red and green components are separated
from the others, even when none of the incoming links to or outgoing
links from those components are removed.

B. Analysis of Approximation Ratio
We show that the JLNA algorithm is an O(

√
log n) bicriteria

approximation algorithm for the β-disruptor problem. We first
show in Lemma 3 the connection between the cost of an
optimal β-disruptor and the minimum cut ratio. This is the
key lemma that show the relation between (bipartite) sparsest
cuts to general (multi-way) cuts.

Cuts in directed networks have different characteristics in
comparison to their counterpart in undirected networks. First,
the cut ratios of 〈S, S̄〉 and 〈S̄, S〉 are different in general.
In addition, different cuts may associate with the same set
of links. For example, the cuts defined by S = {blue nodes},
and S = {blue and green nodes} associates to the same set of
links {(u, v)}. To treat these differences, we use a randomized
argument in the following lemma. Second, components in
directed networks are highly interdependent. As illustrated
in Fig. 2, the failure of link (u, v) effectively breaks the
network into four disconnected components. Red and green

components loose the communication to other parts of the
network, even none of their incoming and outgoing edges,
colored in black, fail. In contrast, the only way to separate a
component from the rest in undirected networks is to remove
all links incident to the component.

To link the average cost to disrupt connected pairs in an
optimal β-disruptor to the minimum cut ratio, we consider the
random partitions of SCCs in the residual graph, subject to
their topological order.

C1

C3
C5

C2
C4

Fig. 3: Construct a (bipartite) cut from SCCs (represented by a node)
in the residual graph G[E \M ]. The edges in M (removed edges)
are colored in red. The cut 〈S, S̄〉 consists of a subset of M : edges
from C4 to C3 and from C5 to C2.

Lemma 3: Given a directed graph G = (V,E) and a subset
of edges M ⊆ E, if ωM = P(G)− P(G[E \M ]) > 0, then

c(M)

ωM
≥ 1

3
αmin(G),

where αmin(G) = min{α(C) | C is a SCC of G}.
Proof: Firstly, we consider the case G is strongly con-

nected. Then αmin(G) = α(G) and P(G) =
(
n
2

)
.

Observe that if we contract each SCC into a single node, we
obtain the graph of SCCs which is a directed acyclic graph.
Thus, there is a topological order for SCCs and we follow the
convention that vertices with no incoming edges will have the
smallest orders. Thus, w.l.o.g, we assume that the removed
edges always come from SCCs with higher orders to SCCs
with lower orders. Let C1, C2, . . . , Ck be SCCs in G[E\M ] in
that topological order and let Ci(V ) denote the set of vertices
in component Ci. We have ωM =

∑
i<j |Ci(V )||Cj(V )|.

We can always find a cut that contains only edges in M
and separates at least 1

3ωM pairs. Construct a cut 〈S, S̄〉 of G
as follows. We select into S̄ vertices in C1, C2, . . . , Ct where
t ≥ 1 satisfies |

⋃t
i=1 Ci(V )| ≤ n

2 and |
⋃t+1
i=1 Ci(V )| > n

2 .
An example for such a cut 〈S, S̄〉 is given in Fig. 3.

+ If |S| = |
⋃t
i=1 Ci(V )| ≥ 1

4n, the constructed cut will
separate at least 1

4n×
3
4n >

1
3

(
n
2

)
≥ 1

3ωM .
+ If |S| = |

⋃t
i=1 Ci(V )| < 1

4n, we consider two sub-
cases. a) If |

⋃n
i=t+2 Ci| ≥

1
4n. Replace 〈S, S̄〉 with 〈S =⋃n

i=t+2 Ci, S̄ = V \ S〉 that separates ≥ 1
3ωM pairs.

b) Otherwise we must have a = |Ct+1| ≥ 1
2n. Replace 〈S, S̄〉

with 〈S = Ct+1, S̄ = V \Ct+1〉 that separates a(n−a) pairs.
Since a ≥ 1

2n, we have

1

3
ωM =

1

3

∑
i<j

|Ci(V )||Cj(V )| ≤ 1

3

(
a(n− a) +

(
n− a

2

))
= (n− a)

1

3

(
1

2
n+

1

2
a− 1

2

)
< a(n− a).

Thus we can always find a cut 〈S, S̄〉 that separates at least
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1
3ωM pairs and the cost of that cut is at most c(M) since
〈S, S̄〉 ⊆M . It follows that c(M)

ωM
≥ 1

3 αmin(G).
Secondly, we consider the case that G is not strongly

connected. Let T1, T2, . . . , Tl be SCCs of G, and let M (j)

be the intersection of M and the edges in Tj , and T ′j be
the subgraphs obtained from Tj after removing M (j). Apply
the above result for the case the graph is connected on each
connected component, we have

c(M) =
∑
j

c(M (j)) ≥ 3
∑
j

α(Tj)
(
P(Tj)− P(T ′j)

)
≥ 3αmin(G)

∑
j

(
P(Tj)− P(T ′j)

)
= 3αmin(G) (P(G)− P(G[E \M ]))

Thus, the lemma holds for every directed graph G.
The quality and performance JLNA depend on the selection

of SPARSE CUT. For example, an exact algorithm to find
minimum ratio cut will lead to a constant factor bicriteria ap-
proximation algorithm for β-disruptor. Unfortunately, finding
the min ratio cut is an NP-hard problem [21]. Thus we have
to rely on approximation algorithms to find good ratio cut in
the graph.

Theorem 1: For any fixed 0 ≤ β′ < β, algorithm JLNA
finds a β-disruptor of cost at most O(

√
log n)OPTβ′ , where

OPTβ′ is the cost of a minimum β′-disruptor.
Proof: The proof consists of two steps. In the first step,

we prove that Dβ = (Vβ , Eβ) is a β-disruptor of G. In the
second step, we prove that the cost of Dβ is at most O(

√
log n)

times the cost of a minimum β′-disruptor, denoted by OPTβ′ .
In order to prove that Dβ is a β-disruptor of G, we show

that the pairwise connectivity in G after removing edges in
G[−Dβ ] = (V \ Vβ , E \ (Eβ ∪ Vβ × Vβ)) is at most β

(
n
2

)
.

First, observe that vertices v− and v+ are either in the same
SCC or they both are isolated. Here, we say a vertex is
isolated if it belongs to a SCC of size one. Assume that
G′[E′ \ Eβ̃ ] can be decomposed into SCCs C ′1, C

′
2, . . . , C

′
l

and 2t isolated vertices w−1 , w
+
1 , . . . , w

−
t , w

+
t . Based on the

construction of G′, we can verify that there are l corresponding
SCCs C1, C2, . . . , Cl and t isolated vertices w1, w2, . . . , wt in
G[−Dβ ]. Moreover, |C ′i| = 2|Ci| for i = 1..l.
Therefore, we have

β̃
(
2n
2

)
≥ P(G′[E′ \ Eβ̃ ]) =

∑
i

(|C′
i|
2

)
= 4

∑
i

(|Ci|
2

)
+
∑
i

|Ci| = 4P(G[−Dβ ]) + (n− t)

Since β̃ < β, we have

P(G[−Dβ ]) ≤ 1

4

(
β̃
(
2n
2

)
− (n− t)

)
≤ β

(
n
2

)
Thus, we have completed the first step. We prove the second
step as follows.

Let D∗β′ = (Vβ′ , Eβ′) be a minimum β′-disruptor i.e.
c(D∗β′) = OPTβ′ . Define

E′β′ = {(v−, v+) | v ∈ Vβ′} ∪ {(u+, v−) | (u, v) ∈ Eβ′}.

By mapping SCCs of G[−D∗β′ ] to those of G′[E′ \E′β′ ] as in

the first step, we can show that E′β′ is a β′-edge disruptor of
G′. Thus,

OPTβ′(G) ≤ OPTEβ′(G′).

Since β′ < β̃, by Lemma 3 if removing a set of edges Mω ⊆ E
disrupts ω pairs of vertices, then c(Mω)

ω ≥ 1/3αmin(G). At any
round in the while loop of JLNA, since a set of edges E∗β′ in a
minimum β′-edge disruptor, for some 0 < β′ < β, can disrupt
at least (β − β′)

(
n
2

)
additional pairs in G, we have

OPTEβ′/
(
(β − β′)

(
n
2

))
≥ 1/3αmin(G). (1)

In addition, our cut procedure is an O(
√

log n) factor ap-
proximation algorithm for the min cut ratio problem, the
average cost to disrupt a pair by removing C∗E is up-
per bounded by O(

√
log n)αmin(G). By (1), the average

cost to disrupt pairs in the graph at any step is at most
O(
√

log n)(OPTEβ′)/
(
(β − β′)

(
n
2

))
. Therefore, even when

Eβ disrupt all
(
n
2

)
pairs in G, the total cost is no more than

O(
√

log n)×
OPTEβ′

(β − β′)
(
n
2

) × (n2) ≤ O(
√

log n)

(β − β′)
×OPTEβ′ .

Thus we have

c(Eβ̃) ≤ O(
√

log 2n)OPTEβ′(G′) ≤ O(
√

log n)OPTβ′(G).

That yields the proof.
Remarks. While the JLNA algorithm can provide a perfor-

mance guarantee on the produced solution, it can be further
improved. First, JNLA often disrupts more than a fraction β
of the connected pairs and result in a higher cost solution.
Second, the SPARSE CUT procedure in JLNA has a high
time complexity of O(n9.5) (it involves solving a large size
semidefinite programming as shown in the appendix). We ad-
dress these issues of JLNA to provide an improved algorithm
in the next section.

IV. HYBRID META-HEURISTIC
We propose in Algorithm 2 a hybrid meta-heuristic (HMH)

that improves over JLNA w.r.t. the following two aspects:
1) HMH avoids disrupting more pairs than necessary by

controlling the difference between the connectivity in the
residual graph and the target connectivity. The pairwise
connectivity is kept to be within (β ± τ)

(
n
2

)
where τ is

a positive parameter and is iteratively reduced by half.
HMH returns the minimum cost β-disruptor encountered
during the search as the solution.

2) HMH improves the running time by replacing the sparse
cut algorithm in [20] with an efficient spectral partitioning
method in subsection IV-B. Further, the solution is refined
in each step with lightweight local search methods in
subsection IV-C.

A. Controlling the pairwise connectivity.
We use a parameter τ , similar to the heating condition in

Simulated Annealing [22], to control how far the pairwise
connectivity in the graph can diverge from the target connec-
tivity β

(
n
2

)
. After each round τ is reduced by half until it is

negligibly small.
First, HMH recursively separates the SCCs in the graph

with a spectral partitioning method (described in the next part)
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Algorithm 2 HMH(G)

Construct the auxiliary graph G′ = (V ′, E′)

Eβ ← ∅, τ ← min{β, 1− β}
while τ > 1/

(
n
2

)
τ ← 1

2τ

repeat
Partition SCCs of G′ using the spectral method
Add the edges into Eβ

until Eβ is a (β − τ)-edge disruptor
for k = 1 to 3 /* Phase 1: Condensation */

repeat
Consider all type k neighbors E′β that
c(E′β) ≤ c(Eβ) and P(G[E \ E′β ]) ≤ β

(
n
2

)
Find among them E′β with the smallest cut ratio
Eβ ← E′β

until no change in Eβ
for k = 1 to 4 /* Phase 2: Exploration */

repeat
Consider all type k neighbors E′β that
(β − τ)

(
n
2

)
≤ P(G[E \ E′β ]) ≤ (β + τ)

(
n
2

)
Find among them E′β with the smallest cut ratio
Eβ ← E′β

until no change in Eβ
return the best solution so far

until the pairwise connectivity is at most (β − τ)
(
n
2

)
(line ).

If multiple SCCs can be cut at the same time, the algorithm
select the SCC with the minimum ratio cut as in the JLNA
algorithm. The algorithm follows by two phases: condensation
and exploration, in which we improve the solution in terms
of cost and cut ratio with local search methods in subsection
IV-C. For simplicity, we use the term neighbor to refer to
a candidate solution that can be obtained from the current
solution Eβ by applying one of the local changes in IV-C.

In the condensation phase, we move from the current solu-
tion Eβ to a smaller cost neighbor. And among the possible
neighbors, we move to the one which results in the smallest cut
ratio. In the exploration phase, we emphasize on improving
the cut ratio to find potential good partition of the network.
Moving to neighbors with higher costs is possible during this
phase as long as the pairwise connectivity differs at most τ

(
n
2

)
from the target connectivity level β

(
n
2

)
.

B. Spectral Partition

The algorithm to find sparse cuts in [20] has a high time
complexity O(n9.5) as it requires solving a large semidefinite
program. We replace that algorithm with a more efficient
spectral partitioning method. Spectral algorithms often give
high quality solutions and can be implemented efficiently by
standard linear algebra packages [23], [24].

Let A = {cij} be the cost matrix of G = (V,E) where
cij = c(vi, vj) is the cost of edge (vi, vj) and cij = 0 if
(vi, vj) /∈ E. The unnormalized graph Laplacian matrix [25]
is defined as L = D −A, where D is a diagonal matrix with
the weighted degrees of vertices on the diagonal.

If G is an undirected graph: For x ∈ Rn we have

xTLx =
1

2

n∑
i,j=1

cij(xi − xj)2 ≥ 0. (2)

The matrix L is symmetric and positive semi-definite. L has
n non-negative, real-valued eigenvalues λ1 = 0 ≤ λ2 ≤
. . . ≤ λn. W.l.o.g, we assume that G is connected. Then
the second smallest eigenvector of L, λ2, is known as the
algebraic connectivity of the graph and can be used to describe
many properties of graphs [25]. We shall use the eigenvector
corresponding to λ2 to derive the bisection of vertices in G.

Recall that SPARSE CUT aims to find the min ratio cut

min
S(V

c(S, S̄)

|S||S̄|
(3)

Consider a vector x ∈ {0, 1}n represent a set of vertices in S
i.e. xi = 1 if vi ∈ S and xi = 0 otherwise. We rewrite the
min ratio cut problem as

min
x∈{0,1}n,x 6=0,1

∑
(vi,vj)∈E cij(xi − xj)

2∑
i

∑
j(xi − xj)2

(4)

Since the problem is NP-hard, we relax the condition xi ∈
{0, 1} to xi ∈ [0, 1]. Substitute x with vector y = x − ‖x‖1n .
After some algebra, we obtain an equivalent problem of (4)

min
y 6=0,y⊥1

1

n

yTLy

yT y
(5)

By Courant-Fisher theorem [25], the solution of the above
minimizing problem is exactly the eigenvector corresponding
to the second smallest eigenvalue of λ2. So we can approxi-
mate the optimal solution of the min ratio cut problem with
the second eigenvector of L by transforming the real-valued
x into a zero-one vector. Specifically, we sort the values of
xi to give a linear ordering of the vertices then determine the
splitting index p that yields the best cut ratio.

If G is a directed graph: We perform one of the sym-
metrization methods such as (A + AT )/2 or AAT [26]
to transform the matrix A into a symmetric matrix before
applying the spectral partitioning.

C. Variable Neighborhood Search
For β-edge disruptor problem, multiple neighborhood struc-

ture is essential to obtain high quality solutions. They help
in both minimizing the cut ratio and the total cut cost. It is
essential that HMM allows both “downhill” moves that reduce
the total cut cost and “uphill” moves that increase the cost of
the solution but reduce the cut ratio.

We consider four different neighborhood structures. From a
solution or a partial solution Eβ ⊂ E, the set of neighbors in
each neighborhood structure can be obtained as follows
• Type 1: Merge two connected components in G[E \Eβ ]

i.e. remove the edges between them from Eβ .
• Type 2: Move a vertex from one component to an adjacent

component in G[E \ Eβ ].
• Type 3: Swap places of two adjacent vertices (u, v) which

belong to two different components.
• Type 4: Partition a component in G[E \ Eβ ] with the

spectral partitioning method in subsection IV-B.
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Time Complexity. Since the algorithm has at most
log
(
n
2

)
= O(log n) phases, and it spends at most O(n3)

times to improve the solution within each phase, the HMH
algorithm has a time complexity O(n3 log n). If we assume
that the eigenvalues can be found within a constant number of
iterations [27], HMM will have a time complexity O(n2 log n).

TABLE II: Sizes of studied networks

Network Nodes Links

US Backbone network[28] 71 98
Synthesis networks 100 200

CAIDA AS [29] 8, 020 36, 406
Oregon AS [29] 11,174 23, 410

V. EXPERIMENTAL STUDIES
We illustrate through our experiments the need to assess

network vulnerability under joint node and link attacks and
the efficiency of our proposed algorithms.

A. Experiment Setups
Datasets. We perform experiments on four synthesis net-

works of the same size and three real communication net-
works, namely US Backbone network [28], CAIDA AS [29],
and Oregon AS [29]. The network sizes are given in Table II.

The synthesis networks are generated with the following
network models.
• Erdos-Reyni: A random graph of 100 vertices and 200

edges following the Erdos-Reyni model [30].
• Barabsi-Albert: A power-law model using preferential

attachment mechanism [31].
• Watts–Strogatz: A random graph which exhibit small-

world phenomenon following model [32] with the dimen-
sion of the lattice 2 and the rewiring probability 0.3[32].

• Forest fire: A random power-law graph following Forest
fire model by Leskovec et al. [29] with the forward and
backward burning probabilities 0.3 and 0.9, respectively.

Real-world traces networks include the following three.
• US Backbone network: The backbone cabling network of

XO company [28].
• CAIDA AS: The CAIDA AS Relationships Dataset from

Sep. 17, 2007 [29].
• Oregon AS: AS peering information inferred from Oregon

route-views between March 31 and May 26, 2001 [29].
Only the largest connected component with 11,174 nodes
and 23,410 links is considered.

Assigning costs for nodes and edges. Assigning mean-
ingful costs for edges and vertices is a challenging task
which usually depends on the availability of the data. For
simplicity, we assume that all edges has uniform removal
costs c(e) = 1 ∀e ∈ E. Note that we can always multiply
simultaneously edge and vertex costs with a constant, then
all optimal disruptors stay optimal (with the costs multiplied
by the same constant). We assign the cost of removing a
vertex u to be c(u) = b + αd(u), where b and α are non-
negative constants. In other words, attacking a node requires
paying a base cost b and an extra cost that is proportional
to the degree centrality. Other centrality measurements e.g.

PageRank, Betweeness centrality can also be used in place of
d(u) to weight the u’s importance.

Solving for the second eigenvector. The major time of
HMH (Algorithm 2) spends on finding the second smallest
eigenvector of the Laplacian matrix. The eigenvectors are
found using the Implicitly Restarted Arnoldi Method, imple-
mented in ARPACK [27]. We use SuperLU [33] as the linear
systems solver.

We use the Shift and Invert spectral transformation to
enhance the convergence rate. We select a scalar σ = 0.01,
called the shift, and transform the original problem Lx = λx
into the shift-and-invert problem (L − σI)−1x = µx where
µ = 1/(λ− σ). Note that setting σ = 0 will crash ARPACK
since L is non-invertible (sum of rows equal zero) 1 . In
addition, spectral partitioning is performed on the symmetrized
matrix A′ + A′T , where A′ is the adjacency matrix of the
auxiliary graph G′, constructed in Algorithm 1.

Enviroment. All algorithms are implemented in C++ and
compiled with GCC 4.4 compiler on a 64 bit Linux machine
with a Quad-core AMD Opteron 2350 2.0 Ghz processor
and 32 GB memory. Only a single core is used during the
experiments. The mathematical optimization package to solve
linear programming formulation is GUROBI 4.5.

B. Comparison of the three disruptor types
In this section, we experiment with different cost schemes

for vertices and edges to highlight the connections among
the three different disruptor types: edge, vertex, and general
(vertex-edge). We find the optimal solutions for each type
of disruptor by solving Mixed Integer Linear Programming
(MILP) formulations in the appendix and in [10].

First, the cost of optimal β-disruptor is always less than the
costs of both β-edge disruptor and β-vertex disruptor. This
suggests that while many networks are vulnerable to only
node attacks (e.g. scale-free networks) or only link attacks,
all networks exhibit higher level of vulnerability to the joint
attacks on both nodes and links. Thus it is essential to assess
the network for such grave attack schemes.

Second, when we apply the cost schemes c(u) = b+αd(u),
the cost of minimum β-disruptor can be strictly less than or
equal the minimum of those of β-edge disruptor and β-vertex
disruptor, depending on the values of b and α. To distinguish
between these two cases, we note that if c(u) < c(u, v)
for some (u, v) ∈ E, then the edge (u, v) should not be
removed (as we can remove u instead). Similarly, a node
u with c(u) >

∑
(u,v)∈E c(u, v) will not be removed since

we can always remove all of its incident edges. Therefore,
we obtain the following cases (with further discussion in the
appendix).
• α = 0, b ≤ 1: OPTβ = OPTVβ ≤ OPTEβ i.e. the

optimal β-disruptor contains no edges.
• α = 0, b > 1: the optimal solutions contain no u with
d(u) < b.

• 0 < α < 1: the optimal β-disruptor contains only vertices
of degree at least b

1−α .

1The ’eigs’ function to find eigenvalues in MATLAB crashes for this reason.
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Fig. 4: The normalized optimal costs of three different disruptor types on the US Backbone network.

• 1 ≤ α: OPTβ = OPTEβ ≤ OPTVβ i.e. the optimal β-
disruptor contains no vertices.

We test four different settings of α and b that correspond
to the above four cases on the fiber backbone operated by a
major U.S. network provider [28]. The optimal costs of three
disruptor types are shown in Fig. 4. In Fig. 7a, the costs of β-
disruptor equal exactly the cost of β-vertex disruptor; in Fig.
4d, the costs of β-disruptor equal exactly the cost of β-edge
disruptor; and in Figs. 4b and 4c, the costs of β-disruptor
are strictly less than the minimum of both edge-disruptor and
vertex-disruptor. These agree with the above four mentioned
cases.

Another observation is that for small β the cost of β-edge
disruptor is less than that of β-vertex disruptor, while for
large β the vertex-disruptor has substantially smaller cost. This
suggests that small scale attacks should target links, while
large scale attacks should pay more attention to nodes to
reduce the attack cost. Nevertheless, a combination of both
node and link attacks would result in a more cost-effective
strategy to break the network.
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Fig. 6: Disruptor costs in AS networks

C. Performance Analysis
We analyze the solution quality and running time of the

proposed algorithms. Specifically, we compare the following
algorithms:
• HMH, the hybrid meta-heuristic presented in Section IV.
• JNLA, the bicriteria algorithm in Section III;
• Betweeness, a greedy algorithm that iteratively removes

the edge with the highest betweeness centrality [34]; and
• Opt. β-dis., optimal β-disruptor found with MILP in the

appendix.
The costs of nodes and links are assigned according to the

above linear scale c(u) = b+ αd(u) with α = b = 0.25.
Solution Quality. The disruptor costs (the smaller the

better) for synthesis networks and AS relationship networks

are shown in Figs. 5 and 6, respectively. As shown in the
figures, there is a consistent order in terms of solution quality:
Opt. β-dis., HMM, JLNA, and Betweeness (from the highest to
the lowest). We note the absence of Opt. β-dis. in AS routing
networks due to the limit in solving MILP.

In average, HMM, the runner-up, is only about 25% away
from the optimal solutions. It performs far better than the
naive Betweeness method and slightly better than JNLA. The
improvement of HMM over JLNA is due to the local search
procedures. These procedures lower the cost by avoiding
separating more than neceessary number of connected pairs,
one of the major disadvantages of JNLA. The gaps between
HMM and JNLA are quite visible in several cases e.g. in
Barabasi network when β = 0.8 or in Watts-Strogatz network
when β = 0.7. Thus employing local search is essential to get
closer to the optimal solutions.

By comparing the disruptor cost of the same algorithm (e.g.
Opt β-disruptor) across different network topologies, it shows
that the networks in decreasing order of their ‘robustness’
are Erdos-Reyni, Watts-Strogatz, Barabasi, and Forest fire. For
example, with a cost equivalent to removing 10% of the links
in the network, the Opt β-disruptor method can disrupt 50%
connectivity in the Erdos-Reyni network, 60% connectivity in
the Barabasi and Watts-Strogatz network, and up to 80% in the
Forest fire network. Also, the gaps between Opt β-disruptor
and the other algorithms suggest that the ‘complexity’, i.e.
how hard it is to approximate the disruptor, tends to follow the
same order (i.e. Erdos-Reyni networks are the hardest to find
disruptor and Forest fire networks are the easiest instances).

TABLE III: Average running time in seconds

Network Betwn. JNLA Opt β. HMM

Erdos-Reyni 6.2e-3 5.7e-2 2.3e+4 1.5e-1
Barabsi-Albert 6.5e-3 3.6e-2 7.6e+3 9.0e-2
Watts-Strogatz 8.0e-3 3.6e-2 2.4e+4 1.1e-1

Forest fire 8.8e-3 4.5e-2 3.1e+2 1.2e-1
Oregon AS 1.2e+2 1.3e+2 - 1.9e+2
CAIDA AS 5.0e+1 1.7e+2 - 2.3e+2

Running Time. We show the average running time in
Table III. Consistently, Opt β-dis. takes the longest time,
followed by HMM, JNLA, and Betweenness takes the least
time. In general, when the network has more than 500 nodes,
the optimal solution cannot be found after several weeks.
And adding more computing resources (CPU and memory)
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Fig. 5: Costs of disruptor algorithms on the synthesis networks (the lower the better)

won’t likely to help due to the exponentially increase in
the complexity of the problem. Moreover, finding Opt β-
dis. via solving the MILP is not only time-consuming but
also memory-consuming. When when the network has few
thousands nodes, the MILP formulation does not fit in the
32GB memory, let alone solving it.

While Betweeeness is the fastest of all, its quality is far
from satisfactory. This leaves us with either JLNA or HMM
for larger networks (more than few hundred of nodes). Also
HMM takes about 50% additional time comparing to JLNA
to produce (consistently) better solutions.

Overall, when the network has less than 200 nodes, we
found that optimal solutions are often achievable by solving
the MILP. For networks with 200 nodes and 2000 nodes, we
can first attempt to solve MILP and if it fails, we can use
HMM algorithm. When network has more than 2000 nodes,
due to the memory limit, it is advisable to deploy HMM to
approximate the optimal disruptor.
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Fig. 7: Cost of Optimal β-disruptor in US backbone network when
β = 50%. The cost is measured in percentage of the total costs of
all nodes and links.

D. Application: Optimal Resource Allocation for Network
Protection

We demonstrate that our solutions to assess joint nodes and
links failures can be applied to find optimal strategy to allocate
resource for maximum network protection. That is given a
fixed budget B, we determine the amount of resource that
each network element receives to make the network robust
against the attacker. In other words, we aim to maximize the
cost that the attacker has to pay in order to reduce the fraction
of pairwise connectivity to β.

For simplicity, we limit our attention to the cost allocation
scheme in Subsection V-A, i.e., all edges have the same cost

c(e) = 1 and the cost of removing a vertex u is c(u) = b +
αd(u). We will need an additional step to scale simultaneously
all the costs so that they sum up to B. Among all possible
values of b and α, we look for pairs that maximize the cost
of β-disruptor.

We show in Fig. 7 the cost of optimal β-disruptor for
US backbone network when β = 50%, b ∈ [0..2.0] and
α ∈ [0..1.5]. The cost of optimal β-disruptor is measured in
percentage of B, the total cost of all nodes and links. As
shown in the figure, the highest cost is achieved at α = 0.15
and b = 0.35.

Despite the simplicity of the allocation scheme, the results
offers several insights into how to allocate resource to protect
network elements. First, neither focusing on protecting only
links (e.g. setting α = b = 0) or only nodes (e.g. assigning
large values for b, α) result in optimal protection plans. There
is certain balance between the effort to spend on the nodes
and those on the links to maintain. This balance, when b is
small, is reflected through the value of α. Second, the strategy
to protect a node u with an amount of resource proportional
to its degree d(u) (i.e. setting b = 0) is not necessary optimal.

Last but not least, given a method to compute the optimal β-
disruptor, the problem of finding the optimal values of b and
α to maximize the disruptor cost has the form of a convex
optimization problem, which can be solved efficiently [35].
We conjecture that this convex form also holds true for more
complicated formulations of the resource allocation problem.
Thus, our proposed methods can act as a key component to
identify optimal resource allocation strategies.

VI. CONCLUDING REMARKS

Joint node and link attacks pose a serious threat to the net-
work. In addition to network connectivity, it is also important
to assess the vulnerability of the network under joint node and
links networks in terms of other performance metrics such as
network throughput, maximum network flow between source-
destination pairs, and so on. Furthermore, the problem of allo-
cating resource to protect the network under the joint attacks
is of great importance and is the topic of our future study.
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APPENDIX

Mixed Integer Linear Programming

We formulate the β-disruptor as an Mixed Integer Linear
Programming (MILP) problem. For each node u ∈ V , we
use an integral variable to indicate whether u is removed.
su = 1 if node u is removed and su = 0, otherwise.
Similarly, we associate each edge (u, v) ∈ E with an integral
variable xuv , where xuv = 1 iff edge (u, v) is removed and
xuv = 0, otherwise. Finally, we use real variables duv = dvu
to represent the distance (or disconnectivity) between all pairs
(u, v) ∈ V ×V in the residual network, i.e., duv = 0 if u and
v are connected and duv > 0 otherwise. The formulation is as
follows.

minimize
n∑

u∈V
c(u)su +

∑
e∈E

c(e)xe (6)

subject to duv ≤ su + sv + xuv, (u, v) ∈ E, (7)
duv + dvw ≥ duw, (u, v) ∈ E (8)∑
u6=v

duv ≥ (1− β)
(
n
2

)
, (9)

0 ≤ su ≤ duv ≤ xuv ≤ 1, u, v (10)
su, xuv ∈ {0, 1}, (u, v) ∈ E (11)

The objective minimizes the total cost of the removed ver-
tices and edges, subjecting to constraint (9) that the pairwise
connectivity in G is at most β

(
n
2

)
. Constraint (8), known as

triangle inequality, implies that if u and v are connected, and
v and w are connected, then u and w must be connected.
Constraint (7) guarantees that for each edge (u, v) ∈ E, the
distance duv > 0 only if either u, v, or edge (u, v) is removed.

Our MILP formulation offers two special improvements
over the direct Integer programming formulations [8]. Firstly,
it has only m+n integral variables (su and xe) as we can prove
that

(
n
2

)
variables duv are not required to be integers [10].

Secondly, it has only O(m×n) constraints while formulations
for the similar problems [8] has at least Ω(n3) constraints. For
many real networks where the average degree is bounded by
a constant, the number of constraints is substantially reduced
to O(n2), leading to a huge reduction in memory and running
time. The following lemma states the correctness of our
formulation.

Lemma 4: The optimal solution of ILP (6-11) induces a
minimum cost β-disruptor Dβ = (Vβ , Eβ) of G, where Vβ =
{u | su = 1} and Eβ = {(u, v) | xuv = 1}.

The proof is similar to the case of the MILP for the β-vertex
disruptor problem in [10], and is omitted here.
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Approximation for Sparse Cut in Directed Graph [20]

We summarize the O(
√

log n) approximation algorithm for
the sparsest cut problem in directed graphs [20].

Definition 2: A unit-l22 representation of a graph G =
(V,E) is an assignment of vector vi to each vertex i ∈ V
such that

1) All vectors vi lie on the unit sphere:

∀i ∈ V ||vi|| = 1

2) The l22 triangle inequality holds:

∀i, j, k ∈ V ||vi − vj || ≤ ||vi − vk||2 + ||vk − vj ||2.

3) A unit-l22 is c-spread if∑
i<j

||vi − vj ||2 ≥ 4c(1− c).n2.

Given a directed graph G, the algorithm first finds a unit-
l22 representation of G by solving the following Semidefinite
Programming relaxation of the directed sparsest cut problem.

minimize
1

8

∑
e=(i,j)∈E

c(e)d(i, j)

subject to

||vi − vj || ≤ ||vi − vk||2 + ||vk − vj ||2 ∀i, j, k ∈ V ∪ {0}∑
i<j

||vi − vj ||2 = 1, vi ∈ Rn ∀i ∈ V ∪ {0}

where d(i, j) = ||vi − vj ||2 − ||v0 − vi||2 + ||v0 − vj ||2.
Then we consider the following two cases.
Case 1: If there is a vertex k such that the ball of squared-

radius 1
8n2 around vk contains at least n/2 vectors (other than

v0). Let X = {i ∈ V | ||vi − vk||2 ≤ 1
8n2 }. We grow X

gradually by adding to X in each step the closest vertex to
X . During the process, we compute the cut ratio of the cut
(X,V \X) and finally return the cut with the minimum ratio.

Case 2: There is no vertices k that satisfies the condition
in Case 1. Perform the following steps.

1) Scale all vectors by 2
√

2n. Pick a vertex k as the center
so that there is a constant fraction of all vertices lie in a
spherical annulus of inner radius 1 and outer radius 160.

2) Apply the ARV separation algorithm in [36] for the
vertices in the spherical annulus and vector v0 to find
a ∆-separated (w.r.t. the l22 distance) sets S and T s.t.
each of them contains at least 2c′ fraction of vertices, for
some constant c′ > 0.

3) Find radius r s.t. at least half of the vectors in S lie inside
the ball of radius r, centered at v0, and at least half of
the vectors lie outside the ball.

4) Let S+ = {i ∈ S|||v0 − vi||2 ≤ r2}. Let S− = {i ∈
S|||v0 − vi||2 ≥ r2}.

5) Let T+ = {i ∈ T |||v0 − vi||2 ≤ r2}. Let T− = {i ∈
T |||v0 − vi||2 ≥ r2}.

6) If |T+| ≥ |T−|, then S∗ = T+;T ∗ = S−; else S∗ =

S+;T ∗ = T−.
7) Find the minimum cut (A, V \ A) between S∗ and T ∗.

Output (A, V \A).
Theorem 2: [20] Given a directed graph G, the above algo-

rithm find a sparsest cut with a cut ratio at most O(
√

log n)
times the minimum cut ratio.

Proof of the observations in Section V-B
We present the observations in Section V-B and discussion.
• α = 0, b ≤ 1: The cost to remove a node u is
b + 0 × d(u) = b ≤ 1. Thus the cost of removing any
edge (one) is no smaller than the cost of removing either
one of its end. Thus any solutions that contain edge(s)
can be transformed into one with only nodes and without
increasing the cost. Thus OPTβ = OPTVβ ≤ OPTEβ i.e.
the optimal β-disruptor contains no edges.

• α = 0, b > 1: The cost of removing u is b > 1. If we
remove a node u with d(u) < b, a better solution is to
remove all edges incident to u and pay a cost d(u) < b.
Thus the optimal solutions contain no u with d(u) < b.

• 0 < α < 1: Using the same argument of removing all
incident edges instead of removing a node, we obtain that
the optimal β-disruptor contains only vertices of degree
at least b

1−α .
• 1 ≤ α: Again, if 1 ≤ α, then removing incidents edges

is better than removing the node itself. Thus OPTβ =
OPTEβ ≤ OPTVβ i.e. the optimal β-disruptor contains no
vertices.
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