Exercise Sheet 9

Hand in solutions not later than Monday, January 4.

Exercise 1. [Gathmanns notes, Ex. 4.6.11] Let $C \subset \mathbb{P}^{2}$ be a smooth curve, given as the zero locus of a homogeneous polynomial $f \in k\left[x_{0}, x_{1}, x_{2}\right]$. Consider the morphism

$$
\varphi: C \rightarrow \mathbb{P}^{2}, \quad P \mapsto\left[\frac{\partial f}{\partial x_{0}}(P): \frac{\partial f}{\partial x_{1}}(P): \frac{\partial f}{\partial x_{2}}(P)\right] .
$$

The image $\varphi(C) \subset \mathbb{P}^{2}$ is called the dual curve to C.
$i)$ Find a geometric description of φ. What does it mean geometrically if $\varphi(P)=\varphi(Q)$ for two distinct points $P, Q \in C$?
ii) If C is a conic, prove that its dual $\varphi(C)$ is also a conic.
iii) For any five lines in \mathbb{P}^{2} in general position (what does this mean?) show that there is a unique conic in \mathbb{P}^{2} that is tangent to these five lines.

Exercise 2. [Gathmanns notes, Ex. 4.6.9] Let $X \subset \mathbb{A}^{n}$ be an affine variety, and let $P \in X$ be a point. Show that the coordinate ring $A\left(C_{X, P}\right)$ of the tangent cone to X at P is equal to $\bigoplus_{k} I(P)^{k} / I(P)^{k+1}$, where $I(P)$ is the ideal of P in $A(X)$.

Exercise 3. Let $X=V(x y z) \subset \mathbb{A}^{3}$. Determine the singular locus Σ of X. Determine the singular locus of Σ.

Exercise 4. Let \mathbb{P}^{N} be the space of hypersurfaces of degree d in \mathbb{P}^{n}, where $N=\binom{n+d}{d}-1$. Show that the subset of \mathbb{P}^{N} corresponding to smooth hypersurfaces is non-empty and open (i.e. a general hypersurface in \mathbb{P}^{n} is smooth).

