Exercise Sheet 6

Hand in solutions not later than Monday, November 30.

Exercise 1. Let $X \subset \mathbb{A}^{n}$ be an affine variety. Let \bar{X} be its projective closure. Show that the field of rational functions $K(X)$ of X is equal to the field of rational functions $K(\bar{X})$ of \bar{X}.

Exercise 2. Let $v_{1,2}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ be the Veronese embedding $(s: t) \mapsto\left(s^{2}\right.$: $s t: t^{2}$) and let X be its image. Show that the projective coordinate ring of X and of \mathbb{P}^{1} are not isomorphic, even though $v_{1,2}$ is an isomorphism.

Exercise 3. Let Y be the image of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3}.
i) Give an equation for Y.
ii) Determine three lines l_{1}, l_{2}, l_{3} in Y, such that l_{1} and l_{2} meet in one point, and l_{2} and l_{3} have empty intersection.
iii) Do l_{1} and l_{3} meet in one point?

Proposition. Let M and N be open sets of algebraic varieties, and φ : $M \rightarrow N$ a morphism whose fibers $\varphi^{-1}(n)$ for $n \in N$ are algebraic varieties, all of the same dimension. Then $\operatorname{dim}(M)=\operatorname{dim}(N)+\operatorname{dim}\left(\varphi^{-1}(n)\right)$.

Exercise 4. Let $\mathbb{G}(1, n)$ be the Grassmann variety parametrizing lines in \mathbb{P}^{n}. If l is a line in \mathbb{P}^{n}, let \bar{l} denote the point of the Grassmann variety corresponding to l. Let $\mathcal{V} \subset \mathbb{G}(1, n) \times \mathbb{P}^{n} \times \mathbb{P}^{n}$ be the set of triples $\{(\bar{l}, p, q) \mid p, q \in l$ and $p \neq q\}$. Let $\pi_{1}: \mathcal{V} \rightarrow \mathbb{G}(1, n)$ and $\pi_{2}: \mathcal{V} \rightarrow\left(\mathbb{P}^{n} \times \mathbb{P}^{n}\right) \backslash \Delta$ be the natural projections.
$i)$ Determine $\operatorname{dim} \pi_{2}^{-1}(p, q)$, for some $(p, q) \in\left(\mathbb{P}^{n} \times \mathbb{P}^{n}\right) \backslash \Delta$. Deduce the dimension of \mathcal{V} from this.
ii) Determine $\operatorname{dim} \pi_{1}^{-1}(\bar{l})$ for some $\bar{l} \in \mathbb{G}(1, n)$. Deduce the dimension of $\mathbb{G}(1, n)$ from this.

