November 23, 2009

Humboldt Universität zu Berlin Algebraic Geometry I Lectures by Prof. Dr. R. N. Kloosterman Exercises by N. Tarasca

Exercise Sheet 6

Hand in solutions not later than Monday, November 30.

Exercise 1. Let $X \subset \mathbb{A}^n$ be an affine variety. Let \overline{X} be its projective closure. Show that the field of rational functions K(X) of X is equal to the field of rational functions $K(\overline{X})$ of \overline{X} .

Exercise 2. Let $v_{1,2} : \mathbb{P}^1 \to \mathbb{P}^2$ be the Veronese embedding $(s:t) \mapsto (s^2: st:t^2)$ and let X be its image. Show that the projective coordinate ring of X and of \mathbb{P}^1 are not isomorphic, even though $v_{1,2}$ is an isomorphism.

Exercise 3. Let Y be the image of the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 .

- i) Give an equation for Y.
- *ii*) Determine three lines l_1, l_2, l_3 in Y, such that l_1 and l_2 meet in one point, and l_2 and l_3 have empty intersection.
- *iii*) Do l_1 and l_3 meet in one point?

Proposition. Let M and N be open sets of algebraic varieties, and φ : $M \to N$ a morphism whose fibers $\varphi^{-1}(n)$ for $n \in N$ are algebraic varieties, all of the same dimension. Then $\dim(M) = \dim(N) + \dim(\varphi^{-1}(n))$.

Exercise 4. Let $\mathbb{G}(1,n)$ be the *Grassmann variety* parametrizing lines in \mathbb{P}^n . If l is a line in \mathbb{P}^n , let \overline{l} denote the point of the Grassmann variety corresponding to l. Let $\mathcal{V} \subset \mathbb{G}(1,n) \times \mathbb{P}^n \times \mathbb{P}^n$ be the set of triples $\{(\overline{l},p,q) \mid p,q \in l \text{ and } p \neq q\}$. Let $\pi_1 : \mathcal{V} \to \mathbb{G}(1,n) \text{ and } \pi_2 : \mathcal{V} \to (\mathbb{P}^n \times \mathbb{P}^n) \setminus \Delta$ be the natural projections.

- i) Determine dim $\pi_2^{-1}(p,q)$, for some $(p,q) \in (\mathbb{P}^n \times \mathbb{P}^n) \setminus \Delta$. Deduce the dimension of \mathcal{V} from this.
- *ii*) Determine dim $\pi_1^{-1}(\overline{l})$ for some $\overline{l} \in \mathbb{G}(1, n)$. Deduce the dimension of $\mathbb{G}(1, n)$ from this.