Exercise Sheet 5

Hand in solutions not later than Monday, November 23.

Exercise 1 Let $C_{1}=V\left(y^{2}+x^{3}+x\right), C_{2}=V\left(x^{3}+y^{3}+1\right)$ and $C_{3}=V\left(y^{3}-\right.$ $\left.2 x y^{2}+x^{2} y+y+1\right)$ be three curves in \mathbb{A}^{2}. Determine for $i=1,2,3$ the projective closure $\overline{C_{i}}$ of C_{i} and determine the intersection of $\overline{C_{i}}$ with the line at infinity.

Exercise 2 [Gathmann's notes, Ex. 3.5.2] Let $C \subset \mathbb{P}^{3}$ be the twisted cubic curve given by the parametrization

$$
\mathbb{P}^{1} \rightarrow \mathbb{P}^{3} \quad(s: t) \mapsto(x: y: z: w)=\left(s^{3}: s^{2} t: s t^{2}: t^{3}\right)
$$

Let $P=(0: 0: 1: 0) \in \mathbb{P}^{3}$, and let H be the hyperplane defined by $z=0$. Let φ be the projection from P to H, i.e. the map associating to a point Q of C the intersection point of the unique line through P and Q with H.
i) Show that φ is a morphism.
ii) Determine the equation of the curve $\varphi(C) \subset H \cong \mathbb{P}^{2}$.
iii) Is $\varphi: C \rightarrow \varphi(C)$ an isomorphism onto its image?

Exercise 3 The intersection of two varieties may not be a variety. Let Q_{1} and Q_{2} be the two quadrics in \mathbb{P}^{3} defined by $x^{2}-y w=0$ and $x y-z w=0$, respectively. Prove that $Q_{1} \cap Q_{2}$ is the union of the twisted cubic curve and a line in \mathbb{P}^{3}.

Exercise 4 Let $\Delta: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the diagonal embedding.
i) Give an affine open covering $\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$ of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. (Hint: use the standard open covering of \mathbb{P}^{1}.)
ii) Determine $V_{i}:=\Delta^{-1}\left(U_{i}\right) \subset \mathbb{P}^{1}$.
iii) Show that $\Delta\left(V_{i}\right)=\Delta\left(\mathbb{P}^{1}\right) \cap U_{i}$ for $i=1, \ldots, 4$.
iv) Show that $\Delta\left(V_{i}\right)$ is closed in U_{i}.
v) Conclude that the prevariety \mathbb{P}^{1} is a variety.

