November 16, 2009

Humboldt Universität zu Berlin Algebraic Geometry I Lectures by Prof. Dr. R. N. Kloosterman Exercises by N. Tarasca

Exercise Sheet 5

Hand in solutions not later than Monday, November 23.

Exercise 1 Let $C_1 = V(y^2 + x^3 + x)$, $C_2 = V(x^3 + y^3 + 1)$ and $C_3 = V(y^3 - 2xy^2 + x^2y + y + 1)$ be three curves in \mathbb{A}^2 . Determine for i = 1, 2, 3 the projective closure $\overline{C_i}$ of C_i and determine the intersection of $\overline{C_i}$ with the line at infinity.

Exercise 2 [Gathmann's notes, Ex. 3.5.2] Let $C \subset \mathbb{P}^3$ be the twisted cubic curve given by the parametrization

$$\mathbb{P}^1 \to \mathbb{P}^3 \quad (s:t) \mapsto (x:y:z:w) = (s^3:s^2t:st^2:t^3).$$

Let $P = (0:0:1:0) \in \mathbb{P}^3$, and let H be the hyperplane defined by z = 0. Let φ be the projection from P to H, i.e. the map associating to a point Q of C the intersection point of the unique line through P and Q with H.

- i) Show that φ is a morphism.
- ii) Determine the equation of the curve $\varphi(C) \subset H \cong \mathbb{P}^2$.
- *iii*) Is $\varphi: C \to \varphi(C)$ an isomorphism onto its image?

Exercise 3 The intersection of two varieties may not be a variety. Let Q_1 and Q_2 be the two quadrics in \mathbb{P}^3 defined by $x^2 - yw = 0$ and xy - zw = 0, respectively. Prove that $Q_1 \cap Q_2$ is the union of the twisted cubic curve and a line in \mathbb{P}^3 .

Exercise 4 Let $\Delta : \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1$ be the diagonal embedding.

- *i)* Give an affine open covering $\{U_1, U_2, U_3, U_4\}$ of $\mathbb{P}^1 \times \mathbb{P}^1$. (Hint: use the standard open covering of \mathbb{P}^1 .)
- *ii)* Determine $V_i := \Delta^{-1}(U_i) \subset \mathbb{P}^1$.
- *iii)* Show that $\Delta(V_i) = \Delta(\mathbb{P}^1) \cap U_i$ for $i = 1, \ldots, 4$.
- iv) Show that $\Delta(V_i)$ is closed in U_i .
- v) Conclude that the prevariety \mathbb{P}^1 is a variety.