November 9, 2009

Humboldt Universität zu Berlin Algebraic Geometry I Lectures by Prof. Dr. R. N. Kloosterman Exercises by N. Tarasca

Exercise Sheet 4

Hand in solutions not later than Monday, November 16.

Exercise 1 [*Gathmann's notes, Ex. 2.6.3*] Which of the following algebraic sets are isomorphic over the complex numbers?

 $i) \mathbb{A}^{1}$ $ii) V(xy) \subset \mathbb{A}^{2}$ $iii) V(x^{2} + y^{2}) \subset \mathbb{A}^{2}$ $iv) V(y - x^{2}, z - x^{3}) \subset \mathbb{A}^{3}.$

Exercise 2 [Gathmann's notes, Ex. 2.6.5] Are the following statements true or false: if $f : \mathbb{A}^n \to \mathbb{A}^m$ is a polynomial map (i.e. $f(P) = (f_1(P), \ldots, f_m(P))$ with $f_i \in k[x_1, \ldots, x_n]$), and \ldots

- i) $X \subset \mathbb{A}^n$ is an algebraic set, then the image $f(X) \subset \mathbb{A}^m$ is an algebraic set;
- *ii)* $X \subset \mathbb{A}^m$ is an algebraic set, then the inverse image $f^1(X) \subset \mathbb{A}^n$ is an algebraic set;
- *iii)* $X \subset \mathbb{A}^n$ is an algebraic set, then the graph $G = \{(x, f(x)) | x \in X\} \subset \mathbb{A}^{n+m}$ is an algebraic set.

Exercise 3 Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree 2g + 1 with distinct roots. Define $g(z) := z^{2g+2}f(\frac{1}{z})$. Let X be the zero locus of $y^2 = f(x)$ and U its open subset $\{(x, y) \in X | x \neq 0\}$. Let Y be the zero locus of $w^2 = g(z)$ and V its open subset $\{(z, w) \in Y | z \neq 0\}$. Define an isomorphism $\phi : U \to V$ as

$$\phi(x,y) = \left(\frac{1}{x}, \frac{y}{x^{g+1}}\right).$$

Let Z be the prevariety obtained by glueing X and Y along U and V via ϕ .

- i) Show that Z is a variety.
- ii) Let $\pi : Z \to \mathbb{P}^1$ be the projection on the first coordinate. Determine which points in \mathbb{P}^1 have one preimage, and which points have two preimages under π .

Remark In general, given a surjective morphism of curves $\psi : X \to Y$, let *d* be the maximal number of preimages. Then there exist a finite number of points in *Y* having a number of preimages less than *d*. These points are called the *branch points* for ψ .

- *iii)* Consider Z as the compactification of X. How many points are there in $Z \setminus X$?
- *iv)* Find an involution ι of Z (i.e. $\iota: Z \to Z$ such that $\iota \circ \iota = id$).

Exercise 4 [Gathmann's notes, Ex. 2.6.9] Let X be a prevariety. Consider pairs (U, f) where U is an open subset of X and $f \in \mathcal{O}_X(U)$ a regular function on U. We call two such pairs (U, f) and (U', f') equivalent if there is an open subset $V \in X$ with $V \subset U \cap U'$ such that $f|_V = f'|_V$.

- i) Show that this defines an equivalence relation.
- ii) Show that the set of all such pairs modulo this equivalence relation is a field. It is called the *field of rational functions on* X and denoted K(X).
- iii) If X is an affine variety, show that K(X) is just the field of rational functions.
- iv) If $U \subset X$ is any non-empty open subset, show that K(U) = K(X).