Exercise Sheet 4

Hand in solutions not later than Monday, November 16.

Exercise 1 [Gathmann's notes, Ex. 2.6.3] Which of the following algebraic sets are isomorphic over the complex numbers?
i) \mathbb{A}^{1}
ii) $V(x y) \subset \mathbb{A}^{2}$
iii) $V\left(x^{2}+y^{2}\right) \subset \mathbb{A}^{2}$
iv) $V\left(y-x^{2}, z-x^{3}\right) \subset \mathbb{A}^{3}$.

Exercise 2 [Gathmann's notes, Ex. 2.6.5] Are the following statements true or false: if $f: \mathbb{A}^{n} \rightarrow \mathbb{A}^{m}$ is a polynomial map (i.e. $f(P)=\left(f_{1}(P), \ldots, f_{m}(P)\right)$ with $\left.f_{i} \in k\left[x_{1}, \ldots, x_{n}\right]\right)$, and \ldots
i) $X \subset \mathbb{A}^{n}$ is an algebraic set, then the image $f(X) \subset \mathbb{A}^{m}$ is an algebraic set;
ii) $X \subset \mathbb{A}^{m}$ is an algebraic set, then the inverse image $f^{1}(X) \subset \mathbb{A}^{n}$ is an algebraic set;
iii) $X \subset \mathbb{A}^{n}$ is an algebraic set, then the graph $G=\{(x, f(x)) \mid x \in X\} \subset$ \mathbb{A}^{n+m} is an algebraic set.

Exercise 3 Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $2 g+1$ with distinct roots. Define $g(z):=z^{2 g+2} f\left(\frac{1}{z}\right)$. Let X be the zero locus of $y^{2}=f(x)$ and U its open subset $\{(x, y) \in X \mid x \neq 0\}$. Let Y be the zero locus of $w^{2}=g(z)$ and V its open subset $\{(z, w) \in Y \mid z \neq 0\}$. Define an isomorphism $\phi: U \rightarrow V$ as

$$
\phi(x, y)=\left(\frac{1}{x}, \frac{y}{x^{g+1}}\right) .
$$

Let Z be the prevariety obtained by glueing X and Y along U and V via ϕ.
i) Show that Z is a variety.
ii) Let $\pi: Z \rightarrow \mathbb{P}^{1}$ be the projection on the first coordinate. Determine which points in \mathbb{P}^{1} have one preimage, and which points have two preimages under π.

Remark In general, given a surjective morphism of curves $\psi: X \rightarrow Y$, let d be the maximal number of preimages. Then there exist a finite number of points in Y having a number of preimages less than d. These points are called the branch points for ψ.
iii) Consider Z as the compactification of X. How many points are there in $Z \backslash X$?
iv) Find an involution ι of Z (i.e. $\iota: Z \rightarrow Z$ such that $\iota \circ \iota=i d$).

Exercise 4 [Gathmann's notes, Ex. 2.6.9] Let X be a prevariety. Consider pairs (U, f) where U is an open subset of X and $f \in \mathcal{O}_{X}(U)$ a regular function on U. We call two such pairs (U, f) and $\left(U^{\prime}, f^{\prime}\right)$ equivalent if there is an open subset $V \in X$ with $V \subset U \cap U^{\prime}$ such that $\left.f\right|_{V}=\left.f^{\prime}\right|_{V}$.
i) Show that this defines an equivalence relation.
ii) Show that the set of all such pairs modulo this equivalence relation is a field. It is called the field of rational functions on X and denoted $K(X)$.
iii) If X is an affine variety, show that $K(X)$ is just the field of rational functions.
iv) If $U \subset X$ is any non-empty open subset, show that $K(U)=K(X)$.

