Exercise Sheet 3

Hand in solutions not later than Monday, November 9.

Exercise 1 Let $X=V\left(y^{2}-x^{3}\right)$ and $X^{\prime}=V\left(y-x^{3}\right)$.
i) Compute $\mathcal{O}_{X,(0,0)}$ and its maximal ideal $\mathfrak{m}_{(0,0)}$. Prove that $\mathfrak{m}_{(0,0)}$ cannot be generated by one element.
ii) Compute $\mathcal{O}_{X^{\prime},(0,0)}$ and its maximal ideal $\mathfrak{m}_{(0,0)}$. Prove that $\mathfrak{m}_{(0,0)}$ is generated by one element.

Exercise 2 Consider the following subsets of $\mathbb{A}^{3}: V=\{(x, y, z) \mid z=x y\}$, $W=\{(1, t, t) \mid t \in k\}$ and $Z=\{(x, y, z) \mid z \neq 0\}$. Determine whether the following restriction maps are surjective or not. Moreover, determine whether they are injective or not and if not determine the kernel:
i) $\mathcal{O}_{V}(V) \rightarrow \mathcal{O}_{W}(W)$
ii) $\mathcal{O}_{V}(V) \rightarrow \mathcal{O}_{V}(Z \cap V)$.

Exercise 3 Let $X=V\left(x^{2}+y^{2}-1\right)$ and $p=(0,1) \in X$.
i) Let $q=(t, 0)$. Find an equation for the line l_{q} passing trough p and q.
ii) Show that for $q=(\pm i, 0)$, we have $l_{q} \cap X=\{p\}$. Find coordinates for \bar{q}, where \bar{q} is such that $l_{q} \cap X=\{p, \bar{q}\}$, for $q \neq(\pm i, 0)$.
iii) Let $f: \mathbb{A}^{1} \backslash\{i,-i\} \rightarrow X \backslash\{p\}$ be the map defined by $f(q)=\bar{q}$. Show that f is a morphism and find its inverse.
iv) Show that f does not induce a morphism $f^{*}: \mathbb{K}[x, y] /\left(x^{2}+y^{2}-1\right) \rightarrow$ $\mathbb{K}[t]$.
$v)$ Show that f induces a field isomorphism $f^{*}: \mathbb{K}(x, y) /\left(x^{2}+y^{2}-1\right) \rightarrow$ $\mathbb{K}(t)$.

Exercise 4 Let \mathcal{F}, G be two sheaves of rings on a topological space X. Prove that $\mathcal{F} \oplus \mathcal{G}$ defined by $(\mathcal{F} \oplus G)(U)=\mathcal{F}(U) \oplus \mathcal{G}(U)$ for each $U \subset X$ open, is a sheaf of rings.

