October 26, 2009

Humboldt Universität zu Berlin Algebraic Geometry I Lectures by Prof. Dr. R. N. Kloosterman Exercises by N. Tarasca

Exercise Sheet 2

Hand in solutions not later than Monday, November 2.

Exercise 1 Let R be a commutative ring, $\mathfrak{a} \subset R$ an ideal. Prove that

$$\sqrt{\mathfrak{a}} = \bigcap_{\substack{\mathfrak{p}\supset\mathfrak{a}\\\mathfrak{p}\,\mathrm{prime}}}\mathfrak{p}.$$

Exercise 2 Find the radicals of the following ideals:

a) $(xy, xz, y^2, yz) \subset \mathbb{R}[x, y, z];$ b) $(72) \subset \mathbb{Z}.$

Exercise 3 [Gathmann's notes, Ex. 1.4.2] Let $X \subset \mathbb{A}^3$ be the union of the three coordinate axes. Determine generators for the ideal I(X). Show that I(X) cannot be generated by fewer than 3 elements, although X has codimension 2 in \mathbb{A}^3 .

Exercise 4 [Gathmann's notes, Ex. 1.4.9] Let $X \subset \mathbb{A}^2$ be an irreducible algebraic set. Show that either

- X = Z(0), i.e. X is the whole space \mathbb{A}^2 , or
- X = Z(f) for some irreducible polynomial $f \in k[x, y]$, or
- X = Z(x a, y b) for some $a, b \in k$, i.e. X is a single point.

Deduce that $\dim(\mathbb{A}^2) = 2$. (Hint: Show that the common zero locus of two polynomials $f, g \in k[x, y]$ without common factor is finite.)