Exercise Sheet 2

Hand in solutions not later than Monday, November 2.

Exercise 1 Let R be a commutative ring, $\mathfrak{a} \subset R$ an ideal. Prove that

$$
\sqrt{\mathfrak{a}}=\bigcap_{\substack{\mathfrak{p} \supset \mathfrak{a} \\ \mathfrak{p} \text { prime }}} \mathfrak{p}
$$

Exercise 2 Find the radicals of the following ideals:
a) $\left(x y, x z, y^{2}, y z\right) \subset \mathbb{R}[x, y, z]$;
b) $(72) \subset \mathbb{Z}$.

Exercise 3 [Gathmann's notes, Ex. 1.4.2] Let $X \subset \mathbb{A}^{3}$ be the union of the three coordinate axes. Determine generators for the ideal $I(X)$. Show that $I(X)$ cannot be generated by fewer than 3 elements, although X has codimension 2 in \mathbb{A}^{3}.

Exercise 4 [Gathmann's notes, Ex. 1.4.9] Let $X \subset \mathbb{A}^{2}$ be an irreducible algebraic set. Show that either

- $X=Z(0)$, i.e. X is the whole space \mathbb{A}^{2}, or
- $X=Z(f)$ for some irreducible polynomial $f \in k[x, y]$, or
- $X=Z(x-a, y-b)$ for some $a, b \in k$, i.e. X is a single point.

Deduce that $\operatorname{dim}\left(\mathbb{A}^{2}\right)=2$. (Hint: Show that the common zero locus of two polynomials $f, g \in k[x, y]$ without common factor is finite.)

