Exercise Sheet 12

Hand in solutions not later than Monday, February 1.

Exercise 1. Let \(x, y, z \) be homogeneous coordinates on \(\mathbb{P}^2 \). Determine the Hilbert function of \(V(xy) \subset \mathbb{P}^2 \).

Exercise 2. Let \(X \) be a prevariety over an algebraically closed field \(K \), and let \(P \in X \) be a closed point of \(X \). Let \(D \) be defined as \(\text{Spec } K[x]/(x^2) \). Show that \(X(D) \cong T_{X,P} \).

Exercise 3. Define \(X \) as \(\text{Spec } K[x, y, z]/(x^2, y^2, xy, xz, yz) \). Show that there exist two subschemes \(S \) and \(T \) of \(X \) such that \(S \cup T = X \), \(\dim T = 0 \) and \(S = X_{\text{red}} \), i.e. \(S \) and \(X \) are the same considered as topological space.

Exercise 4. [Gathmann’s notes, Ex. 5.6.13] Let \(X \) be an affine variety, let \(Y \) be a closed subscheme of \(X \) defined by the ideal \(I \subset A(X) \), and let \(\tilde{X} \) be the blow-up of \(X \) at \(I \). Show that:

i) \(\tilde{X} = \text{Proj } (\bigoplus_{d \geq 0} I^d) \), where we set \(I^0 := A(X) \);

ii) The projection map \(\tilde{X} \to X \) is the morphism induced by the ring homomorphism \(I^0 \to \bigoplus_{d \geq 0} I^d \);

iii) The exceptional divisor of the blow-up, i.e. the fiber \(Y \times_X \tilde{X} \) of the blow-up \(\tilde{X} \to X \) over \(Y \), is isomorphic to \(\text{Proj } (\bigoplus_{d \geq 0} I^d/I^{d+1}) \).