January 18, 2010

Humboldt Universität zu Berlin Algebraic Geometry I Lectures by Prof. Dr. R. N. Kloosterman Exercises by N. Tarasca

Exercise Sheet 11

Hand in solutions not later than Monday, January 25.

Exercise 1. Let $S_k = Spec \mathbb{C}[x, y]/(x^2 + y^{k+1})$, for k > 0. For which values of k is S_k irreducible? For which values of k is S_k separated? For which values of k is S_k reduced?

Exercise 2. Let $S = Spec \mathbb{K}[x, y]/(x + y^3)$, $l_1 = Spec \mathbb{K}[x, y]/(x + y)$, $l_2 = Spec \mathbb{K}[x, y]/(x)$ and $l_3 = Spec \mathbb{K}[x, y]/(y)$. Determine the scheme-theoretic intersections $S \cap l_i$, for i = 1, 2, 3.

Exercise 3. Let $pr_i : \mathbb{A}^n \to \mathbb{A}^1$ be the projection on the *i*-th factor.

- *i*) Determine the fiber product $\mathbb{A}^2 \times_{\mathbb{A}^0} \mathbb{A}^2$.
- *ii)* Determine the fiber product $S_1 := \mathbb{A}^2 \times_{\mathbb{A}^1} \mathbb{A}^3$ via pr_1 and pr_2 . Give the image of $S_1 \to \mathbb{A}^2$ and $S_1 \to \mathbb{A}^3$.
- *ii)* Determine the fiber product $S_2 := \mathbb{A}^2 \times_{\mathbb{A}^1} \mathbb{A}^2$ via pr_1 and pr_2 . Give the two images of $S_2 \to \mathbb{A}^2$.
- *iii)* Determine the fiber product $S_3 := \mathbb{A}^2 \times_{\mathbb{A}^1} \mathbb{A}^2$ via pr_1 and pr_1 . Give the two images of $S_3 \to \mathbb{A}^2$.

Exercise 4. The aim of this exercise is to determine the points of $Spec \mathbb{Z}[\sqrt{3}]$. Recall that $\mathbb{Z}[\sqrt{3}]$ is an Euclidean ring, in particular $\mathbb{Z}[\sqrt{3}]$ is a principal ideal domain.

- i) Let $p \equiv \pm 5 \mod 12$ be a prime number. Show that $p\mathbb{Z}[\sqrt{3}]$ is a prime ideal of $\mathbb{Z}[\sqrt{3}]$.
- ii) Let $p \equiv \pm 1 \mod 12$ be a prime ideal. Show that $p\mathbb{Z}[\sqrt{3}]$ is the product of two prime ideals of $\mathbb{Z}[\sqrt{3}]$.
- *iii)* Show that $2\mathbb{Z}[\sqrt{3}]$ is the product of two prime ideals of $\mathbb{Z}[\sqrt{3}]$.
- *iv)* Show that $3\mathbb{Z}[\sqrt{3}]$ is of the form \mathfrak{p}^2 , where \mathfrak{p} is a prime ideal of $\mathbb{Z}[\sqrt{3}]$.
- v) Let $\sigma : \mathbb{Z}[\sqrt{3}] \to \mathbb{Z}[\sqrt{3}]$ be the conjugation $\sigma(a + b\sqrt{3}) = a b\sqrt{3}$, for $a, b \in \mathbb{Z}$. Show that if \mathfrak{p} is a prime ideal of $\mathbb{Z}\sqrt{3}$, then either $\mathfrak{p} = p\mathbb{Z}[\sqrt{3}]$, or $\mathfrak{p}\sigma(\mathfrak{p}) = p\mathbb{Z}[\sqrt{3}]$, for some prime number p.
- vi) Determine the points of Spec $\mathbb{Z}[\sqrt{3}]$.