Exercise Sheet 11

Hand in solutions not later than Monday, January 25.

Exercise 1. Let $S_{k}=\operatorname{Spec} \mathbb{C}[x, y] /\left(x^{2}+y^{k+1}\right)$, for $k>0$. For which values of k is S_{k} irreducible? For which values of k is S_{k} separated? For which values of k is S_{k} reduced?

Exercise 2. Let $S=\operatorname{Spec} \mathbb{K}[x, y] /\left(x+y^{3}\right), l_{1}=\operatorname{Spec} \mathbb{K}[x, y] /(x+y), l_{2}=$ Spec $\mathbb{K}[x, y] /(x)$ and $l_{3}=S p e c \mathbb{K}[x, y] /(y)$. Determine the scheme-theoretic intersections $S \cap l_{i}$, for $i=1,2,3$.

Exercise 3. Let $p r_{i}: \mathbb{A}^{n} \rightarrow \mathbb{A}^{1}$ be the projection on the i-th factor.
i) Determine the fiber product $\mathbb{A}^{2} \times_{\mathbb{A}^{0}} \mathbb{A}^{2}$.
ii) Determine the fiber product $S_{1}:=\mathbb{A}^{2} \times_{\mathbb{A}^{1}} \mathbb{A}^{3}$ via $p r_{1}$ and $p r_{2}$. Give the image of $S_{1} \rightarrow \mathbb{A}^{2}$ and $S_{1} \rightarrow \mathbb{A}^{3}$.
ii) Determine the fiber product $S_{2}:=\mathbb{A}^{2} \times \mathbb{A}^{1} \mathbb{A}^{2}$ via $p r_{1}$ and $p r_{2}$. Give the two images of $S_{2} \rightarrow \mathbb{A}^{2}$.
iii) Determine the fiber product $S_{3}:=\mathbb{A}^{2} \times_{\mathbb{A}^{1}} \mathbb{A}^{2}$ via $p r_{1}$ and $p r_{1}$. Give the two images of $S_{3} \rightarrow \mathbb{A}^{2}$.

Exercise 4. The aim of this exercise is to determine the points of Spec $\mathbb{Z}[\sqrt{3}]$. Recall that $\mathbb{Z}[\sqrt{3}]$ is an Euclidean ring, in particular $\mathbb{Z}[\sqrt{3}]$ is a principal ideal domain.
i) Let $p \equiv \pm 5 \bmod 12$ be a prime number. Show that $p \mathbb{Z}[\sqrt{3}]$ is a prime ideal of $\mathbb{Z}[\sqrt{3}]$.
ii) Let $p \equiv \pm 1 \bmod 12$ be a prime ideal. Show that $p \mathbb{Z}[\sqrt{3}]$ is the product of two prime ideals of $\mathbb{Z}[\sqrt{3}]$.
iii) Show that $2 \mathbb{Z}[\sqrt{3}]$ is the product of two prime ideals of $\mathbb{Z}[\sqrt{3}]$.
iv) Show that $3 \mathbb{Z}[\sqrt{3}]$ is of the form \mathfrak{p}^{2}, where \mathfrak{p} is a prime ideal of $\mathbb{Z}[\sqrt{3}]$.
v) Let $\sigma: \mathbb{Z}[\sqrt{3}] \rightarrow \mathbb{Z}[\sqrt{3}]$ be the conjugation $\sigma(a+b \sqrt{3})=a-b \sqrt{3}$, for $a, b \in \mathbb{Z}$. Show that if \mathfrak{p} is a prime ideal of $\mathbb{Z} \sqrt{3}$, then either $\mathfrak{p}=p \mathbb{Z}[\sqrt{3}]$, or $\mathfrak{p} \sigma(\mathfrak{p})=p \mathbb{Z}[\sqrt{3}]$, for some prime number p.
vi) Determine the points of Spec $\mathbb{Z}[\sqrt{3}]$.

