January 4, 2010

Humboldt Universität zu Berlin Algebraic Geometry I Lectures by Prof. Dr. R. N. Kloosterman Exercises by N. Tarasca

Exercise Sheet 10

Hand in solutions not later than Monday, January 11.

Exercise 1. Let $\varphi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^3$ be the rational map defined as $[x : y : z] \mapsto [f_0 : f_1 : f_2 : f_3]$, where

- $f_0 = (z+y)(z-y)(y-2z)$ $f_1 = (x+y)(x+3z)(x+2y-3z)$ $f_2 = (z-y)(x+3z)(3x+2y-z)$ $f_3 = (z+y)(x+2y-3z)(z-x-2y).$
- i) Check that f_0, f_1, f_2, f_3 form a basis for the K-vector space of homogeneous degree 3 polynomials in x, y, z that vanishes at

- *ii*) Prove that the image of φ is contained in the cubic hypersurfaces $X = \{[x:y:z:w] \in \mathbb{P}^3 \mid zw^2 z^2w + 8xyw + 2xyz + 6xy^2 16x^2y = 0\}.$
- *iii*) Prove that $\varphi([1:0:0])$ and $\varphi([0:1:0])$ are Eckardt points of X.

Exercise 2. Let $X = \{[x: y: z: w] \in \mathbb{P}^3 | zw^2 - z^2w + 8xyw + 2xyz + 6xy^2 - 16x^2y = 0\}$ be a cubic hypersurface in \mathbb{P}^3 and let $\pi : X \setminus \{p\} \to \mathbb{P}^2$ be the projection from the point $p := [0: 0: 1: 0] \in X$. Let U be the open subset of X where $w \neq 0$.

- i) Show that $\pi|_U : U \to \mathbb{A}^2$ is surjective, and that for each point $P \in U$ we have that $\pi|_U^{-1}(P)$ consists of either one or two points.
- *ii*) Let $C = \{p \in U | \#\pi|_U^{-1}(p) = 1\}$ be the ramification curve. Show that C is a curve of degree 4.
- *iii*) Consider the line $L = \overline{\varphi(V(x+y+4z) \setminus \{p_1, p_3\})}$ on X, with notation as in Exercise 1. Show that $\ell = \pi(L)$ is a line in \mathbb{P}^2 that intersects the ramification curve C at two distinct points r_1, r_2 . Show that ℓ is tangent to C at both r_1 and r_2 .

Exercise 3. Describe the points of $Spec \mathbb{Z}[x]$.

Exercise 4. Let \mathbb{K} be an algebraically closed field. Let f be an irreducible polynomial in $\mathbb{K}[x, y, z]$ Describe the points of Spec $\mathbb{K}[x, y, z]/(f)$.