## Exercise Sheet 10

Hand in solutions not later than Monday, January 11.

Exercise 1. Let $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{3}$ be the rational map defined as $[x: y: z] \mapsto\left[f_{0}:\right.$ $f_{1}: f_{2}: f_{3}$ ], where

$$
\begin{aligned}
f_{0} & =(z+y)(z-y)(y-2 z) \\
f_{1} & =(x+y)(x+3 z)(x+2 y-3 z) \\
f_{2} & =(z-y)(x+3 z)(3 x+2 y-z) \\
f_{3} & =(z+y)(x+2 y-3 z)(z-x-2 y)
\end{aligned}
$$

$i)$ Check that $f_{0}, f_{1}, f_{2}, f_{3}$ form a basis for the $K$-vector space of homogeneous degree 3 polynomials in $x, y, z$ that vanishes at

$$
\begin{array}{ll}
p_{1}=[1: 1: 1] \\
p_{4}=[-3:-1: 1]
\end{array} \quad \begin{aligned}
& p_{2}=[-1: 1: 1] \\
& p_{5}=[-1: 2: 1]
\end{aligned} \quad \begin{aligned}
& p_{3}=[-1: 1: 0] \\
& p_{6}=[-3: 2: 1] .
\end{aligned}
$$

ii) Prove that the image of $\varphi$ is contained in the cubic hypersurfaces $X=$ $\left\{[x: y: z: w] \in \mathbb{P}^{3} \mid z w^{2}-z^{2} w+8 x y w+2 x y z+6 x y^{2}-16 x^{2} y=0\right\}$.
iii) Prove that $\varphi([1: 0: 0])$ and $\varphi([0: 1: 0])$ are Eckardt points of $X$.

Exercise 2. Let $X=\left\{[x: y: z: w] \in \mathbb{P}^{3} \mid z w^{2}-z^{2} w+8 x y w+2 x y z+6 x y^{2}-\right.$ $\left.16 x^{2} y=0\right\}$ be a cubic hypersurface in $\mathbb{P}^{3}$ and let $\pi: X \backslash\{p\} \rightarrow \mathbb{P}^{2}$ be the projection from the point $p:=[0: 0: 1: 0] \in X$. Let $U$ be the open subset of $X$ where $w \neq 0$.
i) Show that $\left.\pi\right|_{U}: U \rightarrow \mathbb{A}^{2}$ is surjective, and that for each point $P \in U$ we have that $\left.\pi\right|_{U} ^{-1}(P)$ consists of either one or two points.
ii) Let $C=\left\{p \in U|\# \pi|_{U}^{-1}(p)=1\right\}$ be the ramification curve. Show that $C$ is a curve of degree 4.
iii) Consider the line $L=\overline{\varphi\left(V(x+y+4 z) \backslash\left\{p_{1}, p_{3}\right\}\right)}$ on $X$, with notation as in Exercise 1. Show that $\ell=\pi(L)$ is a line in $\mathbb{P}^{2}$ that intersects the ramification curve $C$ at two distinct points $r_{1}, r_{2}$. Show that $\ell$ is tangent to $C$ at both $r_{1}$ and $r_{2}$.

Exercise 3. Describe the points of Spec $\mathbb{Z}[x]$.
Exercise 4. Let $\mathbb{K}$ be an algebraically closed field. Let $f$ be an irreducible polynomial in $\mathbb{K}[x, y, z]$ Describe the points of Spec $\mathbb{K}[x, y, z] /(f)$.

