Exercise Sheet 1

Hand in solutions not later than Monday, October 26.

Exercise 1 Let k be a field. Determine whether the following subsets of $M_{n}(k)$ are algebraic or not:
a) the set of symmetric matrices;
b) for $k=\mathbb{C}$ the set of Hermitian matrices.

Exercise 2 Let $k=\mathbb{R}$ and $q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}$.
a) Determine whether $X:=\left\{x \in \mathbb{R}^{3} \mid q(x)=-1\right.$ and $\left.x_{3}>0\right\}$ is algebraic or not in \mathbb{R}^{3}.
b) Determine whether $O(2,1):=\left\{g \in G L_{3}(\mathbb{R}) \mid q(g(x))=q(x) \forall x \in \mathbb{R}^{3}\right\}$ is algebraic or not in $G L_{3}(\mathbb{R})$.

Exercise 3 Let $R=\mathbb{R}[x, y, z]$.
a) Let
$I_{1}=\left(x^{2}+y^{2}-1, z\right), \quad I_{2}=\left(x^{2}+y^{2}+z^{2}-1, z\right), \quad I_{3}=\left(x^{2}+y^{2}-1, z-1\right)$
be ideals of R. Determine whether $I_{i}=I_{j}$ for $i \neq j$ and sketch $V\left(I_{i}\right)$ for $i, j=1,2,3$.
b) Let
$J_{1}=\left(x^{2}+y^{2}+z^{2}-1, x^{2}+y^{2}-z^{2}+1\right), \quad J_{2}=\left(z^{2}-1, x^{2}, x^{2}+y^{2}\right)$, $J_{3}=\left(x^{2}+y^{2}, z^{2}-1\right)$
be ideals of R. Determine whether $J_{i}=J_{j}$ for $i \neq j$ and sketch $V\left(J_{i}\right)$ for $i, j=1,2,3$.

Exercise 4 Determine whether the following rings are Noetherian or not:
a) $\mathbb{Z}[\sqrt{5}]$
b) $\mathbb{Z}[\sqrt{5}, \pi]$.

