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1. Introduction

Spatial dispersal can be an important factor affecting the dynamics of populations. There are many reasons an organ-
ism may move between different spatial locations, including quality of the environment, competition for resources, and
crowding. In populations structured according to factors such as age classes or life-cycle stages, not all classes necessarily
disperse in the same way. Food or habitat preference may vary according to age or life-cycle stage. Integrodifference equa-
tions were first introduced in population ecology by Kot and Schaffer [15] to model the dynamics of dispersing populations
with distinct reproduction and dispersal stages. Alzoubi [1-4] built upon the analysis done by Van Kirk and Lewis [23],
Hardin, Takac and Webb [12] and Kot and Schaffer [15] by incorporating structured population dynamics into integrod-
ifference equation models. He examined the existence and stability of equilibria of stage-structured models by extending
the modeling methodology of Cushing [6] in a non-spatial setting to include a spatial component.

Dispersal may also be driven by density dependent interactions between age classes or life-cycle stages. For example,
vulnerable life-cycle stages of cannibalistic species move to avoid predatory stages [13,17,22]. Here we extend and generalize
Alzoubi’s results by incorporating density dependent dispersal into stage-structured integrodifference equation models. We
assume density (of one or more life stages) may affect the dispersal of a given life stage in two different ways. First, it may
influence whether or not an organism disperses. Second, given that an organism does disperse, density may also affect how
far it moves. The latter effect results in a density dependent kernel while the former results in an added non-integral term
to the model. This method of incorporating density dependence into integrodifference equations was used by Dwyer and
Morris [10] in studying the effect of resource density on consumer dispersal.
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In this paper we examine the existence and stability of the extinction equilibrium and of non-extinction equilibria for
stage-structured density dependent integrodifference equation models, using bifurcation theory based on the inherent net
reproductive number n ([6,7], also referred to in the literature as Rg). We relate the stability of non-extinction equilibria
near the extinction state to the direction of bifurcation at the critical value n = 1. Finally, we illustrate the theory with an
example.

2. Background

In the following sections, we develop a general stage-structured integrodifference equation model incorporating density
dependent dispersal. We aim to write the equilibrium equations for this model in an abstract operator form and to apply
the general bifurcation theorems of Rabinowitz [19] and Dancer [9] to show the existence of a branch of non-extinction
equilibria bifurcating from the extinction state. Here we present the main bifurcation results of Rabinowitz and Dancer that
we will use in Section 3.

The equilibrium equations of the models we develop will take the general form

=A%) (1)

where A € R, E is a real Banach space with norm |- || and A:R x E — E is compact and continuous. Our goal is to write
the operator A in the following form studied by Rabinowitz [19] and Dancer [9]:

AL, X) =ALX+ H(O\, X) (2)

where H(A,X) is o(||X|) for X near 0 uniformly on bounded A intervals and L is a compact linear operator on E. We note
that A(x,0) =0 for all » € R. All potential bifurcation points from the trivial branch of solutions of X = A(X, X) (i.e. solutions
of the form (%, 0), A € R) must be from the set {(«,0): w €r(L)}, where r(L) denotes the set of characteristic values of L.
If i is a characteristic value of odd (geometric) multiplicity, then (u, 0) is a bifurcation point [16].

Theorem 1. (See Rabinowitz [19].) Let S be the closure of the set of nontrivial solution pairs (1, X) of Eq. (1). If i is a characteristic
value of odd (geometric) multiplicity, then S has a (maximal) subcontinuum C;,_ such that (i, 0) € C; and C,, either

1. meets infinity in R x E, or
2. meets (0, 0), where u # € r(L).

Furthermore, if a characteristic value of the linear operator L is simple (of multiplicity one) and A(A,X) is Fréchet differ-
entiable near (u,0), C, can be written as (A(€),x(€)) = (u 4+ 0(1),ev + O(l€|)) for € =0, where v € E is an eigenvector
corresponding to w [19]. The continuum C; can be broken up into two subcontinua, C; and C)f (parametrized by € <0
and € > 0, respectively).

Theorem 2. (See Dancer [9].) If 4 € (L) is a simple characteristic value, then each of the subcontinua C,” and Cr meet (u, 0) and
either

1. meet infinity in R x E, or
2. NG # (. 0).

3. Model development and existence of equilibria

Let 2 C R" be the closure of an open, bounded subset of R" representing the spatial habitat of a species that can be
divided into distinct categories or classes, such as age groups, size categories or life-cycle stages. We assume that population
dynamics (reproduction and class transitions) occur first, followed by dispersal. Dispersing individuals cannot leave f2.
Let x;(t,s), i=1,2,...,m represent the density of individuals at the location s € £2 who are in the ith class at time t
(unit of time equal to dispersal period) and let X(t, s) = (X1 (t, s), ..., Xm(t,s))T. Let 7;j(X(t, ), v) be the expected fraction of
individuals in class j at spatial position v who survive and move into class i in one unit of time. This notation indicates (as
it similarly does in subsequent occurrences) that 7;; is a functional acting on X(t, s) as a function of s. Surviving individuals
might also disperse, and we let k;j(s, v, X(t, -)) denote the dispersal kernel, or the fraction of individuals at position v at
time t that settle at position s by the end of the dispersal period. As indicated, these quantities may depend on the density
of any or all classes at any or all spatial locations.

Let fij(X(t,-),v) be the expected number of surviving i-class offspring at position v per j-class individual per unit of
time. Let the dispersal kernel I;j(s, v, X(t, -)) denote the fraction of i-class offspring of a j-class individual at position v
settling at position s after one time unit. The total number of i-class individuals at position s at time t + 1 is

xi(t+1,s)= / Z[kij(s, VL R(t, )T (R(E, V), v) + L (s, v, X(E, ) fii (R(E, v), v) ]xj(E, v)dv.
j=1
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To be more general, we can also consider the case where only a fraction of the population disperses at any given time.
This fraction may be spatially or density dependent, and we denote it by y;;(X(t, -), v). The number of i-class individuals at
spatial location s at time t + 1 is now

xi(t+1,5) =/Z[I<ij(s, VLRt )T (R(E, V), v) + L (s, v, X(E, ) fij (R(e, v), v) ]y (RCE, ), v)x;(E, vy dy
o =1

+ 3 (1= yij(RCt, ), 5)) [T (R(t, 5), 5)xj(t, 5) + fij (X(t, 5), $)x;(t, 9)].

m

-
—_

Using the m x m matrices T = (kijTij¥ij), F = (ij fijvij), T* = (rij(1 — y4j)) and F* = (fij(1 — y;j)), we can write the above
equation in matrix form:

X(t+1,5) = /[T(s, V.X(t, )+ F(s, v, X(t, )[R, v) dv + [T*(s.R(t, ) + F*(s. X(t, ) |X(t. 5). 3)

(e}

The equilibrium equation is then

xX(s) = /[T(s, v.X()) + F(s, v. X)) [x(v) dv 4 [T*(s. X()) 4 F* (s, X(-)) ]X(s). (4)
2

We will assume the domain of the operator defined by the right-hand side of (4) is a Banach space E of integrable functions
defined on 2 (such as C(§2) or C1(£2)).

Note 1. Only nonnegative valued solutions of the equilibrium equation (4) are biologically relevant. Let K denote an open
cone in E consisting of nonnegative valued functions. In cases where the operator defined by the right-hand side of (4)
is defined on an open set G C E containing K, the closure of the cone K., any re-definition of singularities outside the
positive cone are irrelevant to a biological application. We therefore assume that one may redefine any nonlinearities outside
the cone in such a way as to make the operator globally defined on E.

Note 2. In certain applications it is appropriate to impose boundary conditions on our problem. Rather than working in a
restrictive subspace of E, we will carefully choose our kernel in these applications so as to hold the boundary conditions
invariant.

We will denote the integral operators of Eq. (4) with kernels T(s, v,X(-)) and F(s,v,X(-)) by T and F respectively and
the last two operators on the right side of Eq. (4) by T* and F*, respectively.

Assumption 1. Let E be an ordered Banach space of integrable functions defined on $2. The operators T, F, T*, F*:E — E
are continuous and Fréchet differentiable.

In order to write the equilibrium equation
X=(T+T*)X+ (F+F")x
in Rabinowitz form [19], we expand T, F, T* and F* around X =0 and rewrite the equilibrium equation as follows

%(s) — T*(0)X(s) — f T(s,v,0)x(v)dv = / F(s, v, 0)%(v) dv + F*(0)X(s) + h((s)) (5)
2 2

where h(X) = o(||x||) for X ~ 0. We define F(y) = Jo F(s,v, 0)y(v)dv and T(y) = Jo TG, v, 0)y(v)dv and make the follow-
ing assumptions:

Assumption 2. The operator (I — T*(f)) —T)~ ! exists and is continuous on E.

Assumption 3. Let K, be an open cone of nonnegative valued functions from E. The operator (I — T*(f)) —T)"(F +
F*(0)) has a simple, positive, strictly dominant eigenvalue n with an associated eigenvector V € K. Furthermore, no other
eigenvalue has an eigenvector in the closure K of K.

Note 3. Following [1,6,7] we call n the inherent net reproductive number. It is also commonly denoted by Ry.
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Note 4. The Krein-Rutman Theorem (see Appendix A) can be invoked to verify Assumption 3 under certain conditions,
namely when we have a strongly positive operator. This is done in Alzoubi [3,4]. An operator A is strongly positive if its
kernel is of positive type, or if there exists an integer n such that A™ maps any vector in the cone into the interior of
the cone [16]. It is not true in general, however, that the linear operator L in our applications is strongly positive. In fact,
L cannot be strongly positive if we work on a space such as L,(§2) where the cone of positive valued functions on §2 has
an empty interior. Nonetheless, Assumption 3 is still often true in applications and can be shown directly in certain cases,
eliminating the need to use sufficiency theorems such as the Krein—-Rutman Theorem. An example is given in Section 5.

Note 5. Assumptions 2 and 3 are generalizations of those used in [6,7] for non-spatial models.

Following [6], we choose n as our bifurcation parameter. To do this we use n to normalize the fj;. Let f;j = n¢;j, so
F =n® and F* =n®*. With this normalization (I — T*(0) — T)~1(® + ®*(0)) has a dominant eigenvalue equal to one.
The equilibrium equation (5) can be written as

%(s) — T*(0)X(s) —/T(s, v, 0)x(v)dv =n/q>(s, v, 0)%(v) dv 4 nd*(0)X(s) + h(n, X(s)) (6)
2 2

where h(n, X) = o(||X||) for X ~0 uniformly on bounded n intervals, or by Assumption 2 as

Xx=nLX+ H(n,X) (7)

where

x=(1-T*©) -T)" / BO)xu)du + (I - T*©0) - T) ' @* @)%
2

and

Hm, %) = (1—T*0) - T)'h(n,%).

Eq. (7) has the form (1)-(2) of the nonlinear eigenvalue problem studied by Rabinowitz [19] and Dancer [9]. In order to
apply Theorems 1 and 2, we need the operator on the right-hand side of Eq. (7) to be compact and continuous on E.
Sufficient for this is the following assumption:

Assumption 4. The operators T, F, T* and F* are compact on E.

Note 6. Several theorems from Krasnoselsk'ii [16] can be used to verify operators are completely continuous (satisfying
Assumptions 1 and 4) when working in certain Banach spaces such as C(£2) (Theorem 3.1) or Lp(£2) (Theorem 3.2). For
example, if all the terms t;;, fj;, etc. are continuous functions of their arguments, then Assumptions 1 and 4 hold on the
Banach space E = C(£2).

By Assumption 1, (I — T*(f)) —T)~ 1 is continuous, and it follows that L and H are completely continuous (i.e. continuous
and compact). Moreover, H(n,X) is o(||X||) near O uniformly on bounded n intervals. In summary, under Assumptions 1-4,
Eq. (7) satisfies the conditions needed to apply the bifurcation theory of Rabinowitz and Dancer. The following theorem is
a generalization to (7) of Theorem 3.3 of Alzoubi [2].

Theorem 3. Consider equilibrium equation (7) under Assumptions 1-4. There exists a continuum C;}* of solution pairs (n, X) such that
(1,0) € C;F and one of the following alternatives holds:

1. Cf liesin R x K and is unbounded.
2. C; contains a non-extinction solution pair (n*,x*) € R x dK4, X* #0.

Proof. We have already shown that Eq. (7) satisfies the conditions necessary for the application of Theorem 2 with
subcontinua C; and C;. Because V lies in the open cone K., near the bifurcation point (1,0) the points (n,X) =
(1+ 0(e), €V + 0(€?)) from C; and C;, corresponding to € > 0 and € < 0 respectively, lie in R x K and R x K_ where
K_ = {X: —xeK.}. Note that K, and K_ are open and disjoint.

Alternative 1 of Theorem 2 implies C;/ is unbounded in R x E. Either C;} remains (and is unbounded) in R x K4 or
it meets R x 9K, at a point (n*,x*). The point x* € 9K, is not the origin by Assumption 3. This proves the asserted
alternatives in the case of Alternative 1 in Theorem 2. -

Alternative 2 of Theorem 2 implies the intersection C; N C, contains a point other than the bifurcation point (1,0).
Since both K4 and K_ are open, this common point cannot lie in R x K4 (or R x K_) and, as a result, C;/ must leave
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R x K4 at a point (n*,x*) on the boundary R x 3K, other than the bifurcation point (1, 6). Moreover, X* cannot be the
origin by Assumption 3. This proves the second alternative of the theorem holds. O

In applications, one can often rule out alternative 2 of Theorem 3. For example if we are working in a space with a solid
positive cone and can show L is a strongly positive operator (maps vectors on the closure of the cone to the interior of the
cone), then there cannot be an equilibrium X # 0 on the boundary of the positive cone, 3K

Theorem 3 generalizes Theorem 3.3 of Alzoubi [2] to more general stage-structured integrodifference equations, that
include for example density dependent dispersal, formulated on more general Banach spaces and cones (which permits
more flexibility in applications).

4. Equilibrium stability
4.1. Extinction equilibrium
In Section 3 we introduced the integrodifference equation (3) and studied its equilibrium equation

X(s) = A(n, X(s)) (8)

where

A(n,%(s)) = f [T (5. v, X()) + 1 (s, v. X)) [{(v) dv + [T* (5, X(5)) + ndb* (5. %(5)) Ji(s).

2

In this section we investigate the stability of the extinction equilibrium % =0, a solution of (8) for all n.
The Fréchet derivative of A with respect to x at X =0 has the following matrix form:

A'(n,0)(h)(s) = /(T(s, v,0) +nd(s, v,0))h(v) dv + [T*(©) + n@d*(©)]h(s).
2

Assumption 5. The linear operator A’(n, 6) has a simple, positive, strictly dominant eigenvalue Ao associated with a unique
eigenvector ¢ € K.

Note 7. In certain applications, the Krein-Rutman Theorem can be used to prove the existence of Ag.

The extinction equilibrium is locally asymptotically stable if the dominant eigenvalue of A’(a, n), Ao < 1, and unstable
if Ao > 1 (this is the familiar linearization principle; see [11]). We proved in Section 3 that a continuous branch of non-
extinction equilibria bifurcates from the extinction equilibrium at n = 1. Theorem 7 (see Appendix A) relates the inherent
net reproductive number n to the dominant eigenvalue Ag of A’(n,0), asserting n > 1 (n < 1) if and only if Ag > 1 (Ao < 1).
So n=1 if and only if Ag = 1. From this relationship between n and Ao, we obtain the following theorem:

Theorem 4. Under Assumptions 1-5, the extinction state is stable for n < 1 and unstable forn > 1.
4.2. Stability and direction of bifurcation

In this section we examine the stability of the branch of non-extinction equilibria whose existence was proved in Theo-
rem 3. Finding a formula for these non-extinction equilibria is in general impossible. However, it is usually possible to relate
stability to the direction of bifurcation, at least near the bifurcation point. That relationship follows from the exchange of
stability principle for transcritical bifurcations [5,14].

Formula (9) below provides the relationship between the stability of equilibria and direction of bifurcation near the
bifurcation point (1, X) = (1, 0), where the branch of nontrivial equilibria is parameterized by (n(¢), x(¢)), for |€| small. Let
*(e) denote the dominant eigenvalue of the linearization at the nontrivial equilibrium. Then the eigenvalue perturbation
along the branch of equilibria is given by A(e), and

3 (n0)(0) = —A(0) 9)

where ' = % and * = % (see [14, p. 27]). In Eq. (9), n(0) determines the direction of bifurcation. If n(0) > 0, then the

bifurcation parameter n increases as € increases and we say the bifurcation is to the right (also called supercritical or
forward bifurcation). If n(0) < 0, n decreases as € increases and the bifurcation is to the left (also called subcritical or
backward bifurcation). The sign of A'(ng) tells us whether the dominant eigenvalue ¢ increases or decreases through 1 as

n increases through the bifurcation point n = 1. The signs of these two quantities determine the sign of A(0) in 9).
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The linearization of the system at the positive equilibrium (n(e), x(€))_ gives the positive operator A'(n(¢), x(€))(h(v))
where A’(n(¢€), x(¢€)) is the Fréchet derivative of the nonlinear operator A. A(e€) is the dominant eigenvalue of A'(n(e), x(€))
along the bifurcating branch of non-extinction equilibria. The sign of 2(0) tells us if the branch of equilibria gains or loses
stability as € increases through 0. Since the extinction state loses stability as n increases through 1, we get the following
result from Eq. (9) and the exchange of stability principle (see [14, p. 29]).

Theorem 5. Assume Assumptions 1-5 hold. If the bifurcation is to the right (n(0) > 0), then the branch of non-extinction equilibria
are stable near the bifurcation point ()AL(O) < 0). If the bifurcation is to the left (n(0) < 0), then the branch of non-extinction equilibria
are unstable (i(O) > 0).

In general, right bifurcations occur when density dependence represents negative feedback effects on vital parameters.
Left bifurcations occur when positive feedback density effects (Allee effects) are of sufficient magnitude [6,7].

5. Example of bifurcation theory

In this section we look at an example integrodifference equation model with density dependent dispersal kernels and
apply the theory developed in Sections 3 and 4.

We consider populations whose life cycles consist of two stages, and let X(s) = col(x1(s), x2(s)). These stages can be
considered to be juveniles and adults. We assume individuals are born into stage x; at a rate dependent on the density of
x2 and let fr1 = ﬁ Thus b represents the maximum birthrate of the species. Individuals transit from stage x; to stage x
at a rate s1 (T12 = s1) and from stage x» to xp at a rate sy (T2 =S2).

In order to apply Theorem 3 to the resulting dispersal model, Assumptions 1-4 must be satisfied. We take the Banach
space E = C1(£2) under the usual norm supg (||x||) + supo (|X'||) where 2 is the interval [0, 7r]. We take the open cone
K. to be the set of X(s) such that the components x;(s) are positive on (0,7) and their derivatives xg(s) are nonzero at
s=0 and s=m. All terms fj;, t;;, etc. are continuous in their arguments. As a result we need only verify Assumption 3,
i.e. we need to show that the operator (I — T*(0) — T)~!(F + F*(0)) has a simple, positive, strictly dominant eigenvalue n
with an associated eigenvector in K, and that no other eigenvalue has an associated eigenvector in K. In order to apply
Theorems 4 and 5, we must also show that Assumption 5 is satisfied, i.e. that the operator T + F + T*(0) + F*(0) has a
simple, positive, strictly dominant eigenvalue A with an associated eigenvector in K.

To illustrate the details of an application of the theory, we consider the case when the first stage, x1, is sedentary and
cannot disperse (y11 = y12 = 0), while x, is mobile and the entire population disperses at all times ()21 = Y22 = 1). In the
absence of stage 1 individuals, stage 2 individuals move according to the density independent kernel

1
k(s,v) = 3 sins

on £2 = [0, w]. This kernel imposes hostile boundary conditions. Dispersers prefer the middle of the habitat, as they are
more likely to move to the center of the domain than any other location. Note that the integral over s is equal to one,
which ensures that individuals are not lost or gained during dispersal, but are simply redistributed in space.

We assume that the presence of stage 1 individuals at a given location decreases the fraction of stage 2 individuals
moving to that location at the next time step. We model this density dependent dispersal assumption by setting

sins
ka1 = kao = exp(—D2x1(s)) 20,

where C;y is a normalization constant to ensure the integral over s remains 1.
Under these assumptions the operators T and F* are
- 0 0
T(s,v,x())= i i ,
(5, v,%0)) <s1 1S exp(—Dax1(5)) 52518 exp(—Daxy (s)))
F (s, v.%()) = ( 2 Tew ).
9 9 O 0

Then

> 0 0
T(S,V,0)=<S]m sti&>
2 2

and

F*(s,v,6)=<8 g)
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We want to find the dominant eigenvalue n of (I — T)~! F*(ﬁ). We start by calculating the resolvent of T.

= . [ %1(5) x1(8) 0 0 x1(v)
=1 (xz(s)> - (xz(s)) _/ (—51 sins —22> (xz(v)> dv.
0

We solve the following for x1(s) and x2(s):

<X1(5)>_< , 0o ):<y1(5)>
X2(s) SRS [T x1(v)dv + 2582 [T xp(v)dv ZIODN

Clearly x1(s) = y1(s) and

T T

X2(5) = ya(s) + s 1 fyl(v)dv+£ 52 /yz<s>ds.
0 0

21— 21—

It follows that

. y1(5) y1(s)
-0 (yz(s)>_> <YZ(S)+S'“5[1 [T yiwydv+ 122 [T yz(S)ds]>

and since F*(0)% = (b’%(s)) we obtain

F =1k 2y . [ X1(5) _ bx3(s)
=0t ‘°”<Xz<s>>*(S'z“f;zfo”bxxv)dv)'

The eigenvalue equation is

< ‘ bx2(s) )Zn(X1(5)>
s 1y 1 gmav ) =" s )

Solving for n from the second component equation, we see n = 11’5;2 0” SIS s = 1“;2 The dominant eigenvalue n is simple
and positive and an eigenvector is given by

( sins >
L sins

This eigenvector lies in the cone K and Assumption 3 is satisfied.
Straightforward calculations show that the operator T + F *(0) has a unique dominant eigenvalue given by

S2 1 2
Ao = — + —+/S5 + 4bs1,
0 2+2 5+ 1

with associated eigenvector

<X1(s)>_ sins (10)
x2(s) )~ \ (G + 55/53 +4bs1)sins ) ©

This eigenvector lies in Ky and thus Assumption 5 is satisfied.
It follows from Theorem 4 that the extinction equilibrium x(s) = 0 will be stable fo

From Theorem 3 we know a continuum of non-extinction equilibria bifurcates from the extmctlon equilibrium at bs’ =1.
Theorem 5 asserts that the stability of this branch of equilibria is determined by the direction of bifurcation.

For this example, we can show that the bifurcation is a forward bifurcation (and therefore the non-extinction equilibria
are stable) by showing that all density effects are deleterious, i.e. 0 < P(s, v,X) < P(s, v,0) and 0 < P*(s, v,X) < P*(s, v, 0),
Vs,v e 2, where P=T + F, P* =T* 4+ F*, and X = col(x1, x2). As we will see, this implies that there cannot be a stable
positive equilibrium for n < 1.

For our model,

. 0 0
P(s.v.X(t, '))z(a—u S'"Sexp( Do1xi(6,5)) (1 — 1) 888 exp(—Dayxi (t, s)))

P*(s, v, X(t, -)) = (8 1+x6(t,5) ) ,

> 0 0
ev0= ((1 —une —uz)S%)’
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and

P(s,v,ﬁ):(g g)

Since (1+x2(t,s))~! <1 and exp(—D21x1(t, s)) < 1, it follows that

0< P(s,v,X(t,)) < P(s, v, 0)

and

0< P*(s, v,X(t,-)) < P*(s5,v,0), Vs,veQ.

Let

- 0 0 - 0 b)-
y(t+1,s)—/((1_m)% (1_M2)%>y(t,\/)dv4r<0 O>y(t,5),

ko)
y(0,s) =X(0,s).

Assume X(t,s) < y(t, s), Vs € 2. Then

b1X2(t&f))
2(t+1,s)=<- s )
Sl2£e—D21X1(S) fQ(‘] —u1)x1(v) + (1 — p2)x2(v)dv

by(t,s)

s (Si%fg(l — (V) + (1 - Mz)Xz(V)dV> SerLe.

By induction,

Xt+1,5)<yt+1,5), Vsef, Vvt

and
lim |y(t,s)| =0= lim |X(t,s)| =0.
t—00 t—o0

Let A¢ denote the dominant eigenvalue of T + F +T*(0) + F*(0). By Theorem 7, if n <1 then Ao <1 and |y| = 0 as t — oco.
Thus the extinction equilibrium X = 0 is a global attractor for n < 1 and the bifurcation cannot be to the left. (A similar
result for non-spatial models is given in [6].) Since the bifurcation is to the right, Theorem 5 guarantees the stability of the
non-extinction equilibria near the bifurcation point.

In this section we have utilized the theorem developed in this paper to prove the existence of a stable branch of non-
extinction equilibria near n =1 for a relatively simple dispersal model with two life cycle stages. The theory can also be
applied to models with any number of life stages as well as dispersal kernels and decision functions with arbitrary spatial
and density dependence.

6. Concluding remarks

We developed a general class of stage-structured integrodifference equation models for the dynamics of biological pop-
ulations subject to density dependent dispersal. These models allow for partial dispersal and non-dispersing stages. The
theory developed in this paper addresses the basic question of extinction versus (equilibrium) persistence of the population.
It extends and generalizes the basic bifurcation theory of Cushing [6,7] for structured population dynamics in a non-spatial
setting and that of Alzoubi [2-4] for stage-structured integrodifference equation models with no density dependent disper-
sal.

The theory in this paper is valid near the primary bifurcation point n =1 and does not necessarily tell us about the
existence or stability of model equilibria for larger values of n. For larger n, simulations show that models of the form
(3) with density dependent dispersal can admit spatial patterns. Models of this type have been used to study the spatial
patterns formed by several species of the flour beetle Tribolium, specifically patterns that involve the spatial separation of
life-cycle stages [20,21].
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Appendix A
A.l. The Krein—-Rutman Theorem

Let E be a real Banach space with a total ordered cone Ky, and L: E — E be a linear operator. L is a strongly positive
operator if Lx >> 0 whenever x > 0 [24]. That is, L maps all nonzero x € K; into the interior of the cone, int(Ky). We
note that in order for an operator to be strongly positive, the cone K; must have a non-empty interior. The Krein-Rutman
Theorem may be used in applications to satisfy Assumptions 3 and 5.

Theorem 6 (Krein—Rutman). (See [24].) Let E be a real Banach space with an order cone K having a non-empty interior. Then a
linear, compact, and strongly positive operator T : E — E has the following properties:

(1) T has exactly one eigenvector with x > 0 and || x|| = 1. The corresponding eigenvalue is the spectral radius p(T) and this is
algebraically simple. Furthermore, x >> 0.
(2) The dual operator T* has p(T) as an algebraically simple eigenvalue with a strictly positive eigenvector x*.

Corollary 1 (Comparison principle). (See [24].) If S : E — E is a compact linear operator with Sx > Tx for all x > 0, then p(S) > p(T).
If Sx > Tx for all x > 0, then p(S) > p(T).

A.2. The net reproductive number

Here we prove a theorem relating the inherent net reproductive number n to the dominant eigenvalue 1o of A/(a, n,
asserting n > 1 (n < 1) if and only if 9 > 1 (A9 < 1). Thus n =1 if and only if Ao = 1. The non-spatial version of this
theorem was proved by Cushing [8] and Li and Schneider [18]. Theorem 7 generalizes and offers a completed proof of
Theorem 2.1 of Alzoubi [3].

The proof of Theorem 7 will use the following facts from Zeidler [24]. For linear operators A, B: E — E on a Banach
space E, we have the following properties [24]:

(a) (AB)* = B*A*;
(b) (A+ B)* = A* + B*;
(@) (A7H*=(@An"

Theorem 7. Let E be a real Banach space with an order cone K having a non-empty interior and F, T : E — E are compact linear
operators with I — T invertible. Assume:

1. F(I — T)~! and its dual have a simple, positive, dominant eigenvalue n associated with positive eigenvectors y > 0 and w* > 0.
2. T + cF is strongly positive for all real numbers ¢ > 0.

Then one of the following holds:

l.r=n=1,
2. 1<r<n,
3.0<n<r<1wherer=p(T + F).

Proof. From Assumption 1, (F(I—T)~1)*w* =nw*. Then (I — T*) "' F*w* = nw*. Apply I — T* to both sides of this equation
and divide by n. Then 1F*w* = (I — T*)w* or (T* + 1 F*)w* = w*. This is equivalent to

.1 *
<T + —F) w* = w*.
n

We see 1 is the dominant eigenvalue of the strongly positive operator (T + %F)* and also T + %F. So ,0(% +T)=1 We
consider three cases.

1. Assume n=1.Then 1=p(E +T)=pE +T)=p(F+T)=r.

2. Assume n > 1. Then using Corollary 1 we have T—l—% <F+T <nT+F and 1 :p(%—i—T) <p(F+T)=r<pmT+F)=n.
Sol<r<n.

3. Assume 0 <n < 1. Then using Corollary 1 we have T+%>F+T>nT+F and 1:p(§+T)>p(F+T):r>
pnT+F)=n.So0<n<r<1. O
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